
ANNALES DE L’I. H. P., SECTION B

VADIM A. KAIMANOVICH

ALBERT FISHER
A Poisson formula for harmonic projections
Annales de l’I. H. P., section B, tome 34, no 2 (1998), p. 209-216
<http://www.numdam.org/item?id=AIHPB_1998__34_2_209_0>

© Gauthier-Villars, 1998, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section B »
(http://www.elsevier.com/locate/anihpb) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPB_1998__34_2_209_0
http://www.elsevier.com/locate/anihpb
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


209

A Poisson formula for harmonic projections

Vadim A. KAIMANOVICH

CNRS UMR-6625, IRMAR
University of Manchester

Albert FISHER

Institute of Mathematics
Federal University of Rio Grande do Sul

Ann. Inst. Henri Poincaré,f

Vol. 34, n° 2, 1998, p. 216. Probabilités et Statistiques

ABSTRACT. - For an arbitrary Markov operator P on a Lebesgue measure
space (X, m) we construct a projection S (called harmonic) from L° (X, m)
onto the space of bounded P-harmonic functions H°° (X, m, P). The
projection S is obtained by applying a fixed measure-linear (medial)
mean A on Z+ to the sequence of one-dimensional distributions of the
Markov measure in the path space of the Markov chain associated

with the operator P. If there are no non-constant bounded P-harmonic

functions, S is a projection onto the space of constants.
In the general situation when the space H° (X, m, P) is not necessarily

trivial, the harmonic projection S f can still be considered as a "space
average" of f. We show that for any f E L°° (X, m) the harmonic

projection S f can be recovered from the averages of f (determined by
the mean A) along sample paths of the Markov chain by an integral
Poisson formula in the same way as any bounded harmonic function is

represented by the Poisson integral of its boundary values. In other words,
for any f E m) its space average S f is the Poisson integral of the
time averages along sample paths. © Elsevier, Paris
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RESUME. - Une formule de Poisson pour les projections harmoniques.
Pour un operateur de Markov P sur un espace de Lebesgue (X, m) nous
construisons une projection S (appelee harmonique) de l’espace m)
sur l’espace H°° (X, m, P) des fonctions P-harmoniques bornées. La

projection S est determinee par une moyenne mediale A sur Z+
appliquee a la suite des distributions marginales de la mesure de Markov
dans l’espace des chemins de la chaine de Markov associee a

l’opérateur P. S’il n’y a pas de fonctions P-harmoniques bornees non-
constantes, S est une projection sur l’espace des constantes.
Dans la situation generale, quand l’espace H°° (X, m, P) n’ est pas

necessairement trivial, la projection harmonique S f peut etre toujours
consideree comme une "moyenne spatiale" de f. Nous montrons que pour
chaque f E L°° (X, m) la projection harmonique S f peut etre recuperee par
une formule intégrale de Poisson a partir des moyennes de f (determinees
eux aussi par la limite mediale A) sur les chemins de la chaine ~xn ~ de la
meme maniere qu’ une fonction harmonique bornee peut etre representee par
1’ integrale de Poisson de ses valeurs limites. Autrement dit, pour chaque
~ ~ la moyenne spatiale S f est 1’integrale de Poisson des
moyennes temporelles. © Elsevier, Paris

1. INTRODUCTION

A mean on a measure space (X, m) is a positive normalized (hence,
continuous) linear functional on the space L°° (X, m), or, equivalently,
a finitely additive probability measure on X absolutely continuous with
respect to m. In particular, any usual absolutely continuous 03C3-additive

probability measure on X determines a mean. However, the space

L°° (X, m)* being much larger than L1 (X, m), there are means which
do not correspond to any a-additive measure.

Obviously, there are no shift-invariant probability measures on ~~, but
there are invariant means A on Z+, i.e., such that

Mokobodzki (see [3], [8]) proved that there exists an invariant mean A
on 7 + (called measure-linear or medial) with the following remarkable
property: A is universally measurable as a map from the product space

Arnzales de I ’Institut Henri Poincaré - Probabilités et Statistiques



211A POISSON FORMULA FOR HARMONIC PROJECTIONS

1] 1+ to [-1, 1], i.e., the integral in the R.H.S. below is well defined
for any Borel probability measure  on [-1, 1] 1+, and

Property (2) can be considered as a "finitely additive" counterpart
of the Fubini theorem. As an illustration, let us deduce from (2) a

measure-linear analogue of the Birkhoff ergodic theorem [3]. Fix a measure-
linear mean A on Z+, and let T be an ergodic measure preserving
transformation of a probability measure space (X, m). Assign to any

function f E L°°(X, m) its time averages Tj(x) = Then

the function T f is measurable and T-invariant, hence, a.e. constant by
ergodicity of T. Thus, T is a projection of L° (X, m) onto the space of
constants. Moreover, by (2)

where f (x) dm(x) is the space average of f with respect to the
measure m, so that time averaging and space averaging lead to the same
result.

The aim of this note is to find an analogue of formula (3) in the situation
when the measure m is not necessarily finite, and the additional "space-
time" structure on (X, m) is provided by a Markov operator P rather than
by a measure preserving transformation. This is a much weaker assumption
as Markov operators naturally arise from various geometric structures on
groups, Riemannian manifolds, locally finite graphs, foliations, equivalence
relations, etc. (e.g., see [6]). Of course, any measure type preserving
transformation of the space (X, m) can be considered as a deterministic
Markov operator.

For defining the "space average" S f we replace integrating with respect
to m by averaging with respect to the one-dimensional distributions of
the Markov chain on X, which gives a projection of L°(X, m) onto
the space of bounded P-harmonic functions (we call S the harmonic

projection). If there are no non-constant bounded harmonic functions, then
S is a projection onto the space of constants, i.e., a harmonic mean on

Lx (X, m). The harmonic mean respects the same structures (measurabilty,
Vol. 34, n° 2-1998.



212 V. A. KAIMANOVICH AND A. FISHER

group invariance) as the operator P, which was used for proving amenability
of Riemannian foliations and deck transformations groups in [2] and [7],
respectively.
We consider a more general situation, when the space of bounded

harmonic functions of the operator P is not necessarily trivial, which
means that the space (X, m) is "large enough" to provide the sample paths
of the Markov chain with a non-trivial behaviour at infinity. In this case
the time averages T f obtained by averaging f along sample paths of the
Markov chain on X define a function on the Poisson boundary of the
operator P, and the harmonic projection S f can be recovered from T f by
the integral Poisson formula in the same way as any bounded harmonic
function is represented as the Poisson integral of its boundary values. For
example, if (X, m) is the hyperbolic plane, and P is the Markov operator
of the Brownian motion, then the Poisson boundary coincides with the
circle at infinity; see [6] for other examples of Markov operators with a
non-trivial Poisson boundary.

2. MARKOV OPERATORS AND THE POISSON FORMULA

Let (X, m) be a Lebesgue space with a a-finite measure m, and

P : L°° (X, be a Markov operator (e.g., see [4], [9] for a definition).
The operator P can be presented as

where 7r x is the measurable family of transition probabilities of the operator
P. In order to avoid technical details we assume for a moment that almost

all transition probabilities are absolutely continuous with respect to m,
i.e., where ~) == 

Let X~+ _ {x = (xo, x2, ...)~ be the path space of the associated
Markov chain on X, and P 8 be the Markov measure in the path space
corresponding to an initial distribution 8 on X (we shall also use the

notation Px if 03B8 = 8x is just the delta-measure at a point x E X). Then
the one-dimensional distribution of the measure Pe at a time n &#x3E; 0 is

where 8 ~ 0P is the adjoint operator of P acting in the space of
measures on X. Powers of the operator P can be presented in terms of
the measures P x as

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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The Poisson boundary 8P of the operator P is defined as the space
of ergodic components of the time shift in the path space (X~+ , Pm), so
that there exists a canonical map bnd : X~+ 2014~ The measure type
[v] on 9.P, which is the image of the type of the measure is called

the harmonic measure type. For any initial probability distribution B on
X the measure

is called the harmonic measure corresponding to fi [5].
The ergodic decomposition of the measure Pm with respect to the time

shift in the path space gives rise to the family of conditional measures
P~ indexed by the points ’"’ý E These measures are Markov measures

corresponding to the conditional Markov operators P~’ whose transition
densities are p’~(x, y) = p(x, 
A function f E L°° (X, m) is called P-harmonic if P f = f. The space

of bounded harmonic functions L°° (X, m) is isometric

to the space of bounded measurable functions L°° (~P, [v]) on the Poisson
boundary. Namely, for any function f E H° (X, m, P) there exists a limit
F(bnd x) = lim f (xn) along a.e. sample path x = (xn), and, conversely,
the harmonic function f can be recovered from its boundary values F by
the Poisson formula

where P : [1/]) - H°° (X, m, P) is the Poisson operator [5].
All these constructions carry over to the situation when the Markov

operator P does not have a kernel, i. e. , its transition probabilities are not
absolutely continuous with respect to the reference measure m. In this case
transition probabilities ~r~, harmonic measures vx, and conditional Markov
operators P~’ are defined in terms of canonical systems of conditional
measures in Lebesgue spaces [5].

3. THE MAIN RESULTS

From now on we shall fix a Markov operator P : L°° (X, m) ~ on a

Lebesgue space (X, m) and a measure-linear mean A on 7~+.
THEOREM 1. - The map S = Sx defined as

is a positive norm 1 projection from L°° (X, m) onto m, P).
Vol. 34, n° 2-1998.
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Proof - The fact that S f is a measurable function follows from universal
measurability of A. Clearly, the operator S is linear and it preserves
harmonic functions (since it is positive, it is also immediately clear that it
has norm 1 in L° (X, m)). It remains to check that S f is harmonic. Indeed,

Below we shall refer to S as the harmonic projection determined
by the measure-linear mean A. Since ( f, the operator S
can be interpreted as asymptotic "space averaging" of the function f with
respect to the n-step transition probabilities 8xpn of the operator P. If
there are no non-constant bounded harmonic functions, i. e., if the Poisson

boundary 8P is trivial, S is a projection of L°° (X, m) onto the space of
constants, i.e., a mean on (X, m) called harmonic. Note that according
to a zero-two law for Markov operators [5, Theorem 2.3] triviality of the
Poisson boundary is equivalent to independence of the states of

the choice of an initial distribution 8 on X.

Remark. - The construction of the harmonic projection in [7] used

continuity of the transition probabilities of the operator P. However,

measure-linearity of A allows us to get rid of this assumption and to construct
the harmonic projection for an arbitrary Markov operator. Continuous time
Markov processes (e.g., the Brownian motion) can be dealt with in the
same way by using measure-linear invariant means on R+, cf. [3].

Applying A to the values of a function f E L°(X, m) along sample
paths of the Markov chain on X we obtain a measurable 
on the path space (X~+ , Since ~ is an invariant mean, this function
is invariant with respect to the shift T in the path space, so that it gives
rise to a function

on the Poisson boundary (8P, [v]) of the operator P. The operator
T : [v]) corresponds to taking "time averages"
of the function f along the sample paths of the Markov chain on X.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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THEOREM 2. - For any function f E L°° (X, m) its harmonic projection
( "space average ") S f is obtained by the Poisson formula from its "time
averages" Tf, i.e., the diagram

is commutative.

Proof.

COROLLARY. - If the Poisson boundary of the operator P is trivial, then
the ~-averages of f along Pm -a. e. sample path are the same and coincide
with the space average S f.
The latter Corollary means that if the Poisson boundary is trivial, then the

time averages along random sample paths coincide with the deterministic
space averages. In fact, averages along sample paths can be recovered from
space averages also in the case when the Poisson boundary is non-trivial.
In order to do that, one has to apply the above Corollary to the ergodic
components of the shift in the path space. By definition of the Poisson
boundary as the space of ergodic components, all conditional measures

P~m are ergodic with respect to the time shift, so that the corresponding
conditional Markov operators PI have trivial Poisson boundary. Denote by
S’ the corresponding conditional harmonic means. Then by the Corollary
applied to the conditional measures we obtain

THEOREM 3. - For any function f E m)

Remark. - It would be interesting to find a measure-linear analogue
of the Fatou theorem in the situation when the usual Fatou theorem for

Vol. 34, n° 2-1998.
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bounded harmonic functions holds (e.g., for Markov operators on hyperbolic
spaces; see [1]), i. e. , to replace the conditional harmonic means with

means along "nice" sequences approaching the corresponding boundary
point (geodesics in the hyperbolic case).
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