Biane, Ph.
Relations entre pont et excursion du mouvement Brownien réel
Annales de l'I.H.P. Probabilités et statistiques, Tome 22 (1986) no. 1 , p. 1-7
Zbl 0596.60079 | MR 838369 | 5 citations dans Numdam
URL stable : http://www.numdam.org/item?id=AIHPB_1986__22_1_1_0

Bibliographie

[1] W. Verwaat, A relation between Brownian bridge and Brownian excursion. Ann. of Proba., t. 7, n° 1, 1979, p. 143-149. MR 515820 | Zbl 0392.60058

[2] J.M. Bismut, Last exist decompositions and regularity at the boundary of transition probability. Zeit. für Wahr., t. 69, 1985, p. 65-99. MR 775853 | Zbl 0551.60077

[3] T. Jeulin, Applications de la théorie du grossissement de filtrations à l'étude des temps locaux du mouvement Browniens. Springer, Lecture Notes in Math., t. 1118, p. 197-305. Zbl 0562.60080

[4] J. Pitman, M. Yor, Bessel processes and infinitely divisible laws. Stochastic integrals. Proceedings LMS, Durham, 1980. Springer, Lecture Notes in Math., t. 851. MR 620995 | Zbl 0469.60076

[5] D. Ray, Sojourn times of diffusion processes. Ill. J. Math., t. 7, 1965, p. 615-630. MR 156383 | Zbl 0118.13403

[6] F.B. Knight, Random walk and a sojourn density of Brownian motion. T. A. M. S., t. 109, 1965, p. 56-86. MR 154337 | Zbl 0119.14604

[7] N. Ikeda, S. Watanabe, Stochastic differential equations and diffusion processes. North-Holland, 1981. MR 637061 | Zbl 0495.60005

[8] K. Ito, H.P. Mac-Kean, Diffusion process and their sample path. Springer-Verlag, Berlin, 1965. Zbl 0127.09503