@article{AIHPA_1992__57_3_219_0,
author = {Carey, A. L. and Hannabuss, K. C.},
title = {Temperature states on gauge groups},
journal = {Annales de l'I.H.P. Physique th\'eorique},
pages = {219--257},
year = {1992},
publisher = {Gauthier-Villars},
volume = {57},
number = {3},
mrnumber = {1185334},
zbl = {0769.46052},
language = {en},
url = {https://www.numdam.org/item/AIHPA_1992__57_3_219_0/}
}
Carey, A. L.; Hannabuss, K. C. Temperature states on gauge groups. Annales de l'I.H.P. Physique théorique, Tome 57 (1992) no. 3, pp. 219-257. https://www.numdam.org/item/AIHPA_1992__57_3_219_0/
[1] , On quasi-free states of the CAR and Bogoliubov automorphisms, Publ. Res. Inst. Math. Sci., Vol. 6, 1970, pp. 385-442. | Zbl | MR
[2] and , Representations of the canonical commutation relations describing a non-relativistic free Bose-gas, J. Math. Phys., Vol. 4, 1963, pp. 637-662. | MR
[3] , Bogoliubov automorphisms and Fock representations of canonical anticommutation relations, in Contemporary Mathematics, Amer. Math. Soc., Vol. 62, 1987, pp. 23-141. | Zbl | MR
[4] and , Multiplier representations of abelian groups, J. Func. Analysis, Vol. 14, 1978, pp. 299-324. | Zbl | MR
[5] and , Operator algebras and quantum statistical mechanics II, Springer, New York, 1979. | Zbl | MR
[6] and , On fermion gauge groups, current algebras and Kac-Moody algebras, Acta App. Math., Vol. 10, 1987, pp. 1-86. | Zbl | MR
[7] , Some infinite dimensional groups and bundles, Publ. R.LM.S., Kyoto, Vol. 20, 1984, pp. 1103-1117. | Zbl | MR
[8] , and , Automorphisms of the canonical anticommutation relations and index theory, J. Func. Analysis, Vol. 48, 1982, pp, 360- 393. | Zbl | MR
[9] and , Absence of vacuum polarisation in Fock space, Lett. Math. Phys., Vol. 6, 1982, pp. 335-340. | Zbl | MR
[10] and , Temperature states on loop groups theta functions and the Luttinger model, J. Func. Analysis, Vol. 75, 1987, pp. 128-160. | Zbl | MR
[11] and , A note on the boson-fermion correspondence and infinite dimensional groups, Commun. Math. Phys., Vol. 98, 1985, pp. 435-448. | Zbl | MR
[12] , and , The massless Thirring model: positivity of Klauber's n-point functions, Commun. Math. Phys., Vol. 99, 1985, pp. 347- 364. | MR
[13] , Non-commutative differential geometry, Publ. I.H.E.S., Vol. 62, 1985. | Zbl | Numdam
[14] and , Symmetry behaviour at finite temperature, Phys. Rev., Vol. D9, 1974, pp. 3320-3329.
[15] , Banach algebra techniques in operator theory, Academic Press, New York, 1972. | Zbl | MR
[16] , Two constructions of affine Lie algebra representations and the boson-fermion correspondence in quantum field theory, J. Func. Analysis, Vol. 44, 1981, pp. 259-357. | Zbl | MR
[17] and , Basic representations of affine Lie algebras and dual resonance models, Invent. Math., Vol. 62, 1980, pp. 23-66. | Zbl | MR
[18] , Representations of nilpotent locally compact groups, J. Func. Analysis, Vol. 34, 1979, pp. 164-165. | Zbl | MR
[19] , Characters and contact transformations, Math. Proc. Camb. Phil. Soc., Vol. 90, 1981, pp. 465-476. | Zbl | MR
[20] and , The equilibrium states of the free Boson gas, Commun. Math. Phys., Vol. 36, 1974. | MR
[21] , The free boson gas, in Mathematics of Contemporary Physics, R. F. STREATER Ed., Academic Press, London, 1972.
[22] , Quasi-free second quantisation, Commun. Math. Phys., Vol. 50, 1976, pp. 103-112. | Zbl | MR
[23] , Acta Math., Vol. 99, 1958, pp. 265-311. | Zbl | MR
[24] , Remarks on infinite-dimensional Lie groups, Les Houches, Summer School, 1983, B. DEWITT Ed. | Zbl | MR
[25] , C*-algebras and their automorphism groups, Academic Press, London- New York, 1979. | Zbl | MR
[26] and , Free states of the canonical anticommutation relations, Commun. Math. Phys., Vol. 16, 1970, pp. 1-33. | Zbl | MR
[27] and , Methods of modern mathematical physics IV: scattering theory, Academic Press, New York, 1979. | Zbl | MR
[28] , and , Commun. Math. Phys., Vol. 19, 1970, pp. 119- 141. | MR
[29] , Unitary representations of some infinite dimensional groups, Commun. Math. Phys., Vol. 80, 1981, pp. 301-362. | Zbl | MR
[30] , Jacobi's identity and an isomorphism between a symmetric algebra and an exterior algebra, Oxford lectures and unpublished manuscript.
[31] , Loop groups, Springer Lecture Notes in Math., Vol. III, 1984, pp. 155- 168, and and , Loop groups, Oxford University Press, Oxford, 1986. | Zbl
[32] and , Quasi-equivalence of quasifree states on the Weyl algebra, Commun. Math. Phys., Vol. 21, 1971, pp. 171-191. | Zbl | MR





