On the distribution of scattering poles for perturbations of the Laplacian
Annales de l'Institut Fourier, Tome 42 (1992) no. 3, pp. 625-635.

On considère des opérateurs autoadjoints et positifs de la forme -Δ+P (sui ne sont pas nécessairement elliptiques) dans n , n3, où P est un opérateur différentiel du deuxième ordre, à coefficients à support compact. On montre que le nombre des pôles de la diffusion en dehors d’un voisinage conique de l’axe réel admet des estimations semblables au cas elliptique.

We consider selfadjoint positively definite operators of the form -Δ+P (not necessarily elliptic) in n , n3, odd, where P is a second-order differential operator with coefficients of compact supports. We show that the number of the scattering poles outside a conic neighbourhood of the real axis admits the same estimates as in the elliptic case. More precisely, if {λ j }(Imλ j 0 ) are the scattering poles associated to the operator -Δ+P repeated according to multiplicity, it is proved that for any ε>0 there exists a constant C ε >0 so that #{λ j :|λ j |r, εargλ j π-ε}C ε r n for any r1.

@article{AIF_1992__42_3_625_0,
     author = {Vodev, Georgi},
     title = {On the distribution of scattering poles for perturbations of the {Laplacian}},
     journal = {Annales de l'Institut Fourier},
     pages = {625--635},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {42},
     number = {3},
     year = {1992},
     doi = {10.5802/aif.1303},
     mrnumber = {93i:35098},
     zbl = {0738.35054},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.1303/}
}
TY  - JOUR
AU  - Vodev, Georgi
TI  - On the distribution of scattering poles for perturbations of the Laplacian
JO  - Annales de l'Institut Fourier
PY  - 1992
SP  - 625
EP  - 635
VL  - 42
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/articles/10.5802/aif.1303/
DO  - 10.5802/aif.1303
LA  - en
ID  - AIF_1992__42_3_625_0
ER  - 
%0 Journal Article
%A Vodev, Georgi
%T On the distribution of scattering poles for perturbations of the Laplacian
%J Annales de l'Institut Fourier
%D 1992
%P 625-635
%V 42
%N 3
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/articles/10.5802/aif.1303/
%R 10.5802/aif.1303
%G en
%F AIF_1992__42_3_625_0
Vodev, Georgi. On the distribution of scattering poles for perturbations of the Laplacian. Annales de l'Institut Fourier, Tome 42 (1992) no. 3, pp. 625-635. doi : 10.5802/aif.1303. http://www.numdam.org/articles/10.5802/aif.1303/

[1] C. Bardos, J. Guilot, J. Ralston, La relation de Poisson pour l'équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion, Commun. Partial Differ. Equations, 7 (1982), 905-958. | Zbl

[2] A. Intissar, A polynomial bound on the number of scattering poles for a potential in even dimensional space Rn, Commun. Partial Differ. Equations, 11 (1986), 367-396. | MR | Zbl

[3] P. D. Lax, R. S. Phillips, Scattering Theory, Academic Press, 1967. | Zbl

[4] R. B. Melrose, Polynomial bounds on the number of scattering poles, J. Func. Anal., 53 (1983), 287-303. | MR | Zbl

[5] R. B. Melrose, Polynomial bounds on the distribution of poles in scattering by an obstacle, Journées "Équations aux dérivées partielles", Saint-Jean-de-Monts (1984). | Numdam | Zbl

[6] R. B. Melrose, Weyl asymptotics for the phase in obstacle scattering, Commun. Partial Differ. Equations, 13 (1988), 1431-1439. | MR | Zbl

[7] J. Sjöstrand, Geometric bounds on the number of resonances for semiclassical problems, Duke Math. J., 60 (1990), 1-57. | Zbl

[8] J. Sjöstrand, M. Zworski, Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc., (1991), 729-769. | MR | Zbl

[9] E. C. Titchmarsh, The Theory of Functions, Oxford University Press, 1968.

[10] B. Vainberg, Asymptotic Methods in Equations of Mathematical Physics, Gordon and Breach Sci. Publ., 1988. | Zbl

[11] G. Vodev, Polynomial bounds on the number of scattering poles for symmetric systems, Ann. Inst. Henri Poincaré (Physique théorique), 54 (1991), 199-208. | Numdam | MR | Zbl

[12] G. Vodev, Polynomial bounds on the number of scattering poles for metric perturbations of the Laplacian in Rn, n ≥ 3, odd, Osaka J. Math., 28 (1991), 441-449. | MR | Zbl

[13] G. Vodev, Sharp polynomial bounds on the number of scattering poles for metric perturbation of the Laplacian in Rn, Math. Ann., 291 (1991), 39-49. | MR | Zbl

[14] G. Vodev, Sharp bounds on the number of scattering poles for perturbations of the Lapacian, Commun. Math. Phys., 145 (1992), to appear. | MR | Zbl

[15] M. Zworski, Distribution of poles for scattering in the real line, J. Func. Anal., 73 (1987), 227-296. | MR | Zbl

[16] M. Zworski, Sharp polynomial bounds on the number of scattering poles of radial potentials, J. Func. Anal., 82 (1989), 370-403. | MR | Zbl

[17] M. Zworski, Sharp polynomial bounds on the number of scattering poles, Duke Math. J., 59 (1989), 311-323. | MR | Zbl

Cité par Sources :