We show that every Banach space which is an -ideal in its bidual has the property of Pelczynski. Several consequences are mentioned.
Nous montrons que tout espace de Banach qui est -idéal de son bidual a la propriété de A. Pelczynski, et mentionnons quelques conséquences.
@article{AIF_1989__39_2_361_0,
author = {Godefroy, Gilles and Li, D.},
title = {Banach spaces which are $M$-ideals in their bidual have property $(u)$},
journal = {Annales de l'Institut Fourier},
pages = {361--371},
year = {1989},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {39},
number = {2},
doi = {10.5802/aif.1170},
mrnumber = {90j:46020},
zbl = {0659.46014},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1170/}
}
TY - JOUR AU - Godefroy, Gilles AU - Li, D. TI - Banach spaces which are $M$-ideals in their bidual have property $(u)$ JO - Annales de l'Institut Fourier PY - 1989 SP - 361 EP - 371 VL - 39 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.1170/ DO - 10.5802/aif.1170 LA - en ID - AIF_1989__39_2_361_0 ER -
%0 Journal Article %A Godefroy, Gilles %A Li, D. %T Banach spaces which are $M$-ideals in their bidual have property $(u)$ %J Annales de l'Institut Fourier %D 1989 %P 361-371 %V 39 %N 2 %I Institut Fourier %C Grenoble %U https://www.numdam.org/articles/10.5802/aif.1170/ %R 10.5802/aif.1170 %G en %F AIF_1989__39_2_361_0
Godefroy, Gilles; Li, D. Banach spaces which are $M$-ideals in their bidual have property $(u)$. Annales de l'Institut Fourier, Tome 39 (1989) no. 2, pp. 361-371. doi: 10.5802/aif.1170
[1] , , Structure in real Banach spaces I, Ann. of Math., 96 (1972), 98-128. | Zbl | MR
[2] , M-structure and the Banach-Stone theorem, Lecture Notes in Mathematics 736, Springer-Verlag (1977). | Zbl | MR
[3] , , Banach spaces which are proper M-ideals, Studia Mathematica, 81 (1985), 159-169. | Zbl | MR
[4] , An ordering of Banach spaces, Pacific J. of Maths, 108, 1 (1983), 83-98. | Zbl | MR
[5] , On Riesz subsets of abelian discrete groups, Israel J. of Maths, 61, 3 (1988), 301-331. | Zbl | MR
[6] , , Weakly unconditionally convergent series in M-ideals, Math. Scand., to appear. | Zbl
[7] , , Nouvelles classes d'espaces de Banach à predual unique, Séminaire d'Ana. Fonct. de l'École Polytechnique, Exposé n° 6 (1980/1981). | Zbl | Numdam
[8] , Existence and uniqueness of isometric preduals : a survey, in Banach space Theory, Proceedings of a Research workshop held July 5-25, 1987, Contemporary Mathematics vol. 85 (1989), 131-194. | Zbl
[9] , , Some natural families of M-ideals, to appear. | Zbl
[10] , , On spaces which are M-ideals in their biduals, Trans. Amer. Math. Soc., 283-1 (1984), 253-264. | Zbl | MR
[11] , M-ideals of compact operators in classical Banach spaces, Math. Scand., 44 (1979), 207-217. | Zbl | MR | EuDML
[12] , , Classical Banach spaces, Vol. II, Springer-Verlag (1979). | Zbl | MR
[13] , Produits tensoriels projectifs d'espaces de Banach faiblement sequentiellement complets, Coll. Math., 36-2 (1976), 255-267. | Zbl | MR | EuDML
[14] , Banach spaces on which every unconditionally convergent operator is weakly compact, Bull. Acad. Pol. Sciences, 10 (1962), 641-648. | Zbl | MR
[15] , , Applications of convexity and M-ideal theory to quotient Banach algebras, Quart. J. of Maths. Oxford, 2-30 (1978), 365-384. | Zbl
Cité par Sources :






