Certain classes of locally convex space having non complete separated quotients are studied and consequently results about -completeness are obtained. In particular the space of L. Schwartz is not -complete where denotes a non-empty open set of the euclidean space .
On étudie quelques classes d’espaces localement convexes avec quotients séparés et non-complets et en conséquence on obtient des résultats de -complétude. En particulier, l’espace de L. Schwartz n’est pas -complet, où représente un ensemble non-vide de l’espace euclidien .
@article{AIF_1977__27_4_29_0,
author = {Valdivia, Manuel},
title = {The space $D(U)$ is not $B_r$-complete},
journal = {Annales de l'Institut Fourier},
pages = {29--43},
year = {1977},
publisher = {Imprimerie Durand},
address = {Chartres},
volume = {27},
number = {4},
doi = {10.5802/aif.671},
mrnumber = {57 #17182},
zbl = {0361.46005},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.671/}
}
TY - JOUR AU - Valdivia, Manuel TI - The space $D(U)$ is not $B_r$-complete JO - Annales de l'Institut Fourier PY - 1977 SP - 29 EP - 43 VL - 27 IS - 4 PB - Imprimerie Durand PP - Chartres UR - https://www.numdam.org/articles/10.5802/aif.671/ DO - 10.5802/aif.671 LA - en ID - AIF_1977__27_4_29_0 ER -
Valdivia, Manuel. The space $D(U)$ is not $B_r$-complete. Annales de l'Institut Fourier, Tome 27 (1977) no. 4, pp. 29-43. doi: 10.5802/aif.671
[1] , Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., No. 16 (1966). | Zbl
[2] , Topological Vector Spaces I. Berlin-Heidelberg-New York, Springer 1969. | Zbl
[3] , Nuclear locally convex spaces. Berlin-Heidelberg-New York, Springer 1972. | Zbl | MR
[4] , Completeness and open mapping theorem, Bull. Soc. Math. France, 86 (1958), 41-74. | Zbl | MR | Numdam
[5] , On B-complete topological vector groups, Studia Math., 31 (1968), 295-306.
[6] , The space D is not hereditarily complete, Izv. Akad. Nauk SSSR, Ser. Math., 35 (3) (1971), 686-696; Math. USSR Izvestija, 5 (3) (1971), 696-710. | Zbl
[7] , On countable locally convex direct sums, Arch. d. Math., XXVI, 4 (1975), 407-413. | Zbl | MR
[8] , On Br-completeness, Ann. Inst. Fourier, Grenoble 25, 2 (1975), 235-248. | Zbl | MR | Numdam
[9] , Mackey convergence and the closed graph theorem, Arch. d. Math., XXV, 6 (1974), 649-656. | Zbl | MR
[10] , The space of distributions D′(Ω) is not Br-complete, Math. Ann., 211 (1974), 145-149. | Zbl | MR | EuDML
Cité par Sources :






