Every conical measure on a weak complete space is represented as integration with respect to a -additive measure on the cylindrical -algebra in . The connection between conical measures on and -valued measures gives then some sufficient conditions for the representing measure to be finite.
Toute mesure conique sur un espace faible complet est représentée comme l’intégration par rapport à une mesure complètement additive sur la -algèbre cylindrique. Le lien entre les mesures coniques sur et les mesures abstraites à valeurs dans donne des conditions suffisantes pour que la mesure représentante soit finie.
@article{AIF_1977__27_1_83_0,
author = {Kluv\'anek, Igor},
title = {Conical measures and vector measures},
journal = {Annales de l'Institut Fourier},
pages = {83--105},
year = {1977},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {27},
number = {1},
doi = {10.5802/aif.643},
mrnumber = {57 #9936},
zbl = {0311.28008},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.643/}
}
Kluvánek, Igor. Conical measures and vector measures. Annales de l'Institut Fourier, Tome 27 (1977) no. 1, pp. 83-105. doi: 10.5802/aif.643
[1] , On exposed points of the range of a vector measure, Vector and operator valued measures and applications (Proc. Sympos. Snowbird Resort, Alta, Utah ; 1972), p. 7-22. Academic Press, New York 1973. | Zbl
[2] , and , Weak compactness and vector measures, Canad. J. Math., 7 (1955), 289-305. | Zbl | MR
[3] , Mesures coniques, affines et cylindriques, Symposia Mathematica, vol. II (INDAM, Roma, 1968) p. 145-182. Academic Press, London 1969. | Zbl
[4] , Lectures on Analysis, Edit. J. Marsden, T. Lance and S. Gelbart, W.A. Benjamin Inc. New York — Amsterdam 1969. | Zbl
[5] , The range of a vector-valued measure, Math. Systems Theory, 7 (1973), 44-54. | Zbl | MR
[6] , The extension and closure of vector measure, Vector and operator valued measures and applications (Proc. Sympos. Snowbird Resort, Alta, Utah ; 1972), p. 175-190. Academic Press, New York 1973. | Zbl
[7] , Characterization of the closed convex hull of the range of a vector-valued measure, J. Functional Analysis, 21 (1976), 316-329. | Zbl | MR
[8] , and , Vector measures and control systems, North Holland Publishing Co. Amsterdam 1975.
[9] , Theorem of Bartle, Dunford and Schwartz concerning vector measures, Mat. Zametki, 7 (1970), 247-254 (English translation Math. Notes, 7 (1970), 147-151). | Zbl
[10] , Equivalence of measure spaces, Amer. J. Math., 73 (1951), 275-313. | Zbl | MR
[11] , Extension and decomposition of vector measures, J. London Math., Soc., (2), 3 (1971), 672-676. | Zbl
Cité par Sources :






