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CONICAL MEASURES AND VECTOR MEASURES

by Igor KLUVANEK

One of the most important objects related to a family [f^ : t E I}
of (real-valued) random variables is the joint distribution of this
family. It is a mesure on the cylindrical a-algebra in the space R1.
Indeed, all properties of this family (as a family of random variables)
are reflected by its distribution. It can happen that neither the
family of random variables itself nor the probability measure on the
underlying space are available but we are given the indefinite integrals
of all random variables f^ i € I (assuming them integrable). In that
case the joint distribution cannot be determined. However, the
conical measure on R1 determined by the joint distribution still
can be reconstructed. It is clear that there remain many properties
of the family of random variables which can be inferred from
this conical measure.

Noticing the obvious fact that the family of indefinite integrals
of the functions f^ i G I, can be interpreted as a measure with
values in the space R1, we propose to investigate the indicated
situation in a more general setting. To every abstract measure
with values in a locally convex topological vector space E, there
corresponds a conical measure on E and also on the weak completion
E^* of E. There are many properties of the vector measure which
can be determined from the corresponding conical measure. Also
conversely, the vector measure can be made a tool for studying the
conical measure.

In the first Section, it is proved that every conical measure
on a weak complete space E is represented (not uniquely) as integration
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with respect to a non-negative measure X on the cylindrical a-algebra
in E. And X can even be extended on a larger a-algebra so as to
become a direct sum of finite measures.

This result and the connection between measures with values
in E and conical measures on E is used in Sections 2 and 3 to obtain
information on the general structure of abstract E-valued measures.
In the final Section are stated some results concerning conical
measures. In particular, some conditions are given guaranteeing
that a conical measure on E be expressible as integration with
respect to a finite (a-additive) measure on the cylindrical a-algebra
in E.

1. Representation of conical measures.

Let E be a real locally convex topological vector space with
topological dual E' and algebraic dual E*.

The vector lattice of functions on E generated by E' is denoted
by h (E). Every element / of h (E) can be written as

f(x) = sup {f, (jc) : 1 <;•</}- sup [f, W : I 4- 1 < ; < k\ x G E,

where f, E E\ for 1 < i < fc, 1 < / < k.
A non-negative linear form on h (E) is termed a conical measure

on E (see Choquet [3] or [4]).
The interest in this Section is focused on weak complete

spaces. If E is a weak complete topological vector space then there
exists an index set I such that, up to a topological vector space
isomorphism,

E = R1 ;

the structure of the topological vector space on R1 being that of
the product of one-dimensional ones.

Without a loss of generality it will- be assumed that I is well-
ordered and, indeed, that I is an interval of ordinal numbers with 0
as the least element.

For every K E I, let p^ be the projection of E = R1 onto
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its K-ih co-ordinate ; that is, p^(x) = x^ for every element x = (x)^
ofE.

It is known that [ p , : L E 1} forms a Hamel basis for E\ Also
h (E) is the vector lattice generated by [p^ : L G I}.

For every K E I, define

T^ = [x G E : p, (x) = 0 for L < K and I p^ (x) 1 = 1 }

Furthermore, let

T= U T^.
K G I K

Given a function / on E, by /1 T is denoted its restriction to T
and by/n\ its restriction to T\; h (E) | T^ = {/1 T^: fE /z (E)}, /< G I ;
/z(E) | T= {/ | T :/E/r(E)}.

Let S^ be the a-algebra of subsets of T^ generated by h (E) | T^,
i.e. the associated a-algebra such that all functions in h (E) | T\
are 5'^-mesurable, K G I. Let 5' be the direct sum of a-algebras
S^ K G I. That is, S consists of all sets X C T such that X 0 T\ E S^
for every K E I.

If X^ is a measure on 5^, for each /< G I, a measure X on 5'
is termed the direct sum of the measures X^, K G I, if

x (X) = Z \ (x n T\), x e &
K G I

We say also, in this case, that the measure space (T , S , X) is the
direct sum of the measure spaces (T^ , S^ , X^), K E I.

THEOREM 1.— Let u be a conical measure on the weak complete
space E = R1. Then, for every K G I, there exists a unique finite
measure X^ on S^ such that, if (T , S, X) is the direct sum of the
measure spaces (T^ , S ^ , X^), K E I, then

u(f)= f ( / IT )6?X (1 )

for every /E h (E). TTze vector lattice h (E) | T is dense in L1 (X).
The main part of this Section is devoted to the proof of

Theorem 1.
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According to Choquet [3, Theoreme 17] or [4, Theorem 38.3],
u is a Daniell integral on h (E). Let L be a linear lattice of functions
on E containing h (E) and such that

i) there is a Daniell integral on L which is an extension of u
and which will be denoted by u, again ;

ii) the Dominated convergence theorem (Lebesgue theorem)
holds for this extension of u on L ,

iii) for every /G L and € > 0, there exists g G h (E) such that
u(\f-g\)<e ;

iv) all function in L are real-valued (the values ± °°are excluded)
and belong to the least class of functions containing h (E) which
is closed with respect to the point-wise convergence of sequences.

The general theory of Daniell integrals guarantees that such L
and the corresponding extension of u exist.

We put, as customary, L^ = {/ G L : f > 0}.
The property (iv) implies that every function / in L is positive-

homogeneous (a > 0 and x E E imply that f(ax) = af (x)). The
positive homogeneity in turn implies that u can be considered a
Daniell integral on the vector lattice L \ T = {/I T : / G L}. Specifically,
if/^ E Z ^ = l , 2 , . . . , a n d i f / ^ ( r ) ^ 0 for every t G T, then/^ (x) ^ 0
for every x E E and u (/„) -> 0, n -> °°.

Let u^ and ^ be functionals defined on L inductively for every
c G I as follows.

Let K G I. Assume that u^ is already defined for each i < K.
Denote

i\ (/) = u (/) - Z u, (f), (2)
1,<K

for every /E Z, and put

^ (/) = sup {i^ (/A a | pj) : a > 0} (3)

for every /G ^+; furthermore u^ (f) = u^ (f^) - u^ (/^)for every f^L.

LEMMA 2. — The functionals u^ v^ are ^ell-defined Daniell
integrals on and L and 0 < u^ < v^ < u, for every L G I.
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Proof. - Let K G I. Assume that u^ v^ are Daniell integrals
and 0 < u^ < v^ < u, for every t < K.

Given f^L^, we have

0<r,(/)=M(/)- Z ^(/)
i<»»

for every v < K, Hence

0 < 1. ^ (/) = sup { H ^ (/) : v < K} < u (f).
l< K t,<t»

i.e. 0 < v^ (f) < u (f). In particular, v^ is well-defined by (2). It is
then clear also that v^ is a linear form on L. The inequality

0<^(/)<^(/).

for /G L\ implies that v^ is a Daniell integral.
Now, u^ is well-defined by (3) and 0 < u^ (f) < v^ (f) for

every /EL'1'. The definition then extends on the whole of L We
show that u^ is a linear form.

L e t / . ^ G Z ^ . S i n c e y + ^ A a l p J ^ C f A a l p J + ( g / \ a \p^ |)
for every a > 0, the definition (3) gives that u^ (f + g) <u^(f)+ u^(g).
On the other hand, for every € > 0 there is a > 0 and j3 > 0 such
that

u,(f)- e <v,(f/^a\p,\) , u , ( g ) - e <t\(^|pj).

Consequently,

^ (/) +^^) - 2 € < v ^ ( f ^ a \ p ^ \ ) + v ^ ( g ^ P \ p ^ )

< ̂  W + 8) A (a + p) | pj) < ̂  (f + ̂ ).

So,^(/+g)=^(/) +^(^).

For every / G ^+ and c > 0,

^ (c/) = ^P {^K (^/A a | ̂  |) : a > 0} =

= c sup {I^(/A (a/c) | pj) : a > 0} = c u^ (/).

The linearity of u^ follows.
The inequality 0 < ̂  (f) < v^ (/), for each /€ L^, implies that

u^ is a Daniell integral.
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LEMMA 3. - Let /E Lt Then

^ u,(f) = sup [u (fi\ ^) : ^ G Z, ^ (r) = 0 for t^ U TJ (4)
1 K «< i

a/i^
y
^ u,(f) = sup {^ (/A (/?) : ^ G Z, (̂  (r) = 0 for t E U T } (5)

l<<< ^<. l

for every K £ /.

Proo/ - If /< = 0, the statement (4) is true by the definition
of UQ and (5) is true vacuously.

Let K E I, K > 0. Assume that (4) holds if K is replaced by
any v G I, y < K. Then (5) follows. An inductive proof will be
proving (4).

Let ^ be functions vanishing on every T\ with K < t such that
^ < ̂ -i, ^ = 1,2, . . . , and u (f/\ ^) ̂  S ^ (/). Let

l< «

^ = l im/A^ = sup/A^.

Then
^ ^ ) = ^ ( y A ^ ) = S u,(f). (6)

l< K

Moreover, if 6 E ^+ is a function vanishing on every T with K < c
then

u ( ( f - g ) ^ 0 ) = 0 . (7)

Indeed, if (7) were not true then

u(fi\(g + 0)) = I / ( /A^) + u ( ( f - g ) ^ 6 ) > u ( g )

would follow, contradicting (6) and (5).

Also, if/ </,/ G L\ then S ^ (f9) - ,/ (/ A^). This because,
l< K

for any <p G Z4' vanishing on every T^ with /< < i, we have

u(f f\^<u(f' i\g) +u((f' ̂ f\g)^- - ^ / \ g ) ) ^ u ( f ' / \ g) +

4- ^ ( ( / - ^ ) A ( < ^ - ( ^ A ^ ) ) = u(f\ g),

choosing 0 = ^ - ̂  A g in (7).



CONICAL MEASURES AND VECTOR MEASURES 89

We have, in fact, proved that v^ (f') = u (/") - u (f' A g) for
every /' £ L^, f < f.

Let h = lim^» /A n \ pj. Hence u^ (f) = v^ (h) = v^ (/A /o.Now

1 M, (/) = S ^ (f) + ̂  (/) = u (fh g) + v^ (/A h) = u (/A g) +
t< K i< K

+ u {fi\ h) - u (fi\ hi\ g) = u (/A tev/z)).

Suppose that (^ E ^+ and that evanishes on every T^ such
that /< < L Then

^ (/A ^) < u (/A (̂  v /OA ^) + ^ ((/- g v /z) A ^). (8)

The function 6 = ( f - g \ / h ) / \ ^ vanishes on every T^ with K < I
and 0 = ( f - g ) ^ e, hence, by (7), u ((f- g\i h)/\ ^) = 0. So (8)
gives that u (f/\ <^) < u (f/\ (g v A)), proving (4).

LEMMA 4. - For every f G L vanishing on every T, such that
K < t, ̂  relation

^ u,(f)^u(f) (9)
i< «

/zo/rf^. r/z^ equality

lLu,(f)=u(f) (10)
i<=i

/zo/^ /or ^p^r^ / G Z,.

Proo/: - The first statement (9) follows immediately form (4).
This implies (10) for every / G h (E) since each / G / ? ( E ) vanishes
on every T^, /< < L, for some K G I.

Let now f^-L. For every e > 0 there exists g G h (E) such
that ^ (|/-^ |) < € . Consequently,

\u(f) - "Lu,(f)\ ̂ \u(f)-u(g)\ + \ u ( g ) - S ^(^)| 4-
^ I ie l

+ | ^ U,(g) - I.U,(f)\<u(\f-g\) +\u(g)-^ U,(g) | +
tG I iG I ^ I

+ Z ^ ( 1 / - ^ 1 ) < 2 ^ ( | / - ^ | ) < 2 e.
iei
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L I M M A 5. - Let K C I. Letf^ E L, n = 1,2,. . . , anrf let f^ (t) \ 0,
for every t e T^ .Then u^ (f^) -> 0.

Proof. - If g e L and g (t) = 0 for every r G T^, then

g ( t ) i ^ a \ p ^ ( t ) \ = 0

for every t E U T^. Hence, by Lemma 3, y (^ A a | ?„ |) == 0 for each
K< I

a > 0. So, u^ (g) = 0.
Now put gi = /i and g^ = g^ A /„, n = 2,3,. . . , Then

^MUO),

for every ^ ^ T, where g is a function in L such that g (^) = 0
for all r G T,. Hence ̂  (/„) = ̂  (g^) -> u^(g) = 0.

Proof of theorem 1. — By Lemma 5, the functional

/I T,->^ (/),/€£

is a Daniell integral on the vector lattice {/ |T^ : /GZJ, for every
/< G I. Since this vector lattice, or even h (E) | T^, contains non-zero
constants, there exists a unique measure X^ on S^ such that

^cn-X^11^^
for every /E £. The measure X^ is finite, X^ (T^) < °°, and A (E) | T^
is dense in L1 (X^).

If X is the direct sum of measures X^, K E I, then (1) holds
for every /£ L and /z (E) | T becomes dense in L1 (X).

The cylindrical a-algebra C = C(E) in the space E is by definition
the smallest o-algebra of subsets of E such that every continuous
linear form on E is C-measurable ; it is the smallest a-algebra such
that every function in h (E) is C-measurable.

COROLLARY 6. - // E is a weak complete space then, for every
conical measure u on E, there exists a o-additive measure X on the
cylindrical o'algebra C such that

u(f)=f^fd\ (11)
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for every /E h (E). Moreover there exists a a-algebra 0 of subsets
of E such that C C D and for every conical measure u on F there is
a a-additive measure \ on D which is a direct sum of finite measures
such that (10) holds.

Proof. — Define D to be the family of all sets X C E such that
X 0 T^ E 5 ,̂ for each K G I. Given a conical measure u, define
the measure X on D by X (X) = IL X (X U T\), X G 0. Then,

K G I

clearly, (11) holds and X is a direct sum of finite measures.
It is clear that C C D and that if X is restricted to C then (11)

remains valid.

2. Families of scalar measures.

In this Section a theorem is proved establishing an isometry
and vector lattice isomorphism of any vector lattice of finitely
additive real measures onto a dense linear sub-lattice of a space
L1 (X) with a suitable measure X which is direct sum of finite measures.
This result can be, of course, obtained using Kakutani's concrete
representation theorem of abstract L -spaces. The aim is, however,
to base the proof on Theorem 1 so as to show its implications and
to achieve a unity of method. This could be of interest by offering
a new and, possibly, more direct approach to Kakutani's theorem.
The proved theorem will be used as a lemma in the subsequent
Section concerning the structure of vector measures.

Let T be an abstract space and let R be an algebra of subsets
of T. By baCR) is denoted the set of all bounded finitely additive
real-valued functions (measures) on R. The set baCR) carries several
structures. It is a vector lattice with respect to the set-wise linear
operations and order. If jn, v G ba (R), then JLI v v is the least element
in baCR) majoring both ju and v and JUA v is the greatest element
majored by jn and v ; | jn | = ^ v (— ^) for every JJL E ba (R). The
norm ju »-» || jn || = | ^ \ (T), ^ E ba (R), makes of ba (R) a Banach
space.

The set of all a-additive elements of baCR) is denoted by
ca (R). It is a closed normed subspace of ba CR), hence also a Banach
space ; also it is a vector sub-lattice of ba (R).
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Let H C ba (R). Two sets Xp X^ € R are declared H-equivalent
if I jn | (X^ A X^) = 0, for every jn E H. The H-equivalence class of a
set X is denoted [X]^ whenever the distinction is material ; otherwise
we do not distinguish between a set in R and its H-equivalence
class. The set of all H-equivalence classes is denoted by R (H). It is
a Boolean algebra with respect to the induced operations ; i.e.
R (H) equals to R modulo the ideal of sets H-equivalent to 0.

Every measure p. E H defines the Nikodym pseudo-metric d
on R and on R (H) ; namely d^ (X , Y) == | ^ \ (X A Y), for X, Y E T ? .
By T (H) is denoted the topology and also the uniform structure on
R and on R (H) determined by the system [ d ^ ' . ju E H} of pseudo-
metrics.

In the situation when R is a a-algebra and X is a a-additive
measure on R having possibly infinite values, R (X) and r (X) are
interpreted as R (L1 (X)) and r (L1 (X)), respectively, where L1 (X)
in its turn is interpreted as the family of indefinite integrals of
X-integrable functions, i.e. as a subset of ca (R) C ba (R). In the
case when X is localizable in the sense of Segal [10], and this is
the case of our main interest, we can say that r (X) stands for the
topology r (H) where H is the set of all finite measures absolutely
continuous with respect to X. In this situation, a net X, of sets
in R tends to X E R in the topology r (X) if and only if X (X, A X)-> 0.

Let H C b a C R ) be a vector sub-lattice. Let E = H* be the
algebraic dual of the vector space H.

For every jn E H and x E E, denote /x* (x) = x (ju). -If we
give E its a (E , H)-topology, then E' will be identified with H by
the star-mapping. This is to say, jn* belongs to E\ for every IJL E H'.
and, conversely, every element of E' is equal to jn* for some jn E H.
It follows that every function / E h (E) can be expressed as

f(x) = sup [x (^.) : 1 < i < /} - sup {xQx,) : / 4- 1 < i < k} =

=sup{^* ( j c ) : K f < / } - s u p { j L i f ( ^ ) : / 4 - K / < f c } , x E E , (12)

for some JLI, E H, 1 < i < k, 1 < / < k.

LEMMA 7. — There exists a unique vector lattice homomorphism
^ : h (E) ̂  H such that $ (jn*) = /i, for JLI E H. For every f E h (E),
written in the form (12), the lvalue ^ (f) is given by
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/ k
$(/)= V j^.- V JLI,, (13)

1= 1 (•=/+ 1

where the lattice operations are those of H or ba (R).

Proof. - If such a homomorphism exists then, clearly, (13)
holds- Hence it suffices to show that (13) defines unambiguously a
homomorphism $ : h (E) -> H .

Suppose that /E h (E) is given by (12) and that

g (x) = sup [x (y,) : ! < / < / ' } - sup {x (^) : /' + 1 < i < /c'},
x E E, with v, G H, 1 < / < k[ 1 < /' < ^.

I f / = g, i.e. f(x) = g (x), for every x E E, then, in particular,

sup {^ (X) : 1 < i < /}- sup {^LI, (X) : / + 1 < ; < k} =

= sup [v, (X) : 1 < / < /'}- sup {v, (X) : /' 4- 1 < ; < ^},

for every X E 7?. It then follows that
/ k i 1 k'
V JLI, - V .̂ = V ,̂ - V ,̂

i= 1 i = / + 1 <•= 1 i=l'+ 1

Consequently, $ (/) = ^> (^).
Hence the mapping <^> : h (E) -> H is defined unambigously by

(13). The formula (13) now implies easily that $ is a vector lattice
homomorphism.

Let f be the subset of E and S the a-algebra of subsets of t
as in Theorem 1 ; this theorem is applicable since E is a weak
complete space. It means that every conical measure u on E is
represented as

u(f)=f. f(t) d\(t\f(Eh(E), (14)

where ^ is a measure on S, a direct sum of finite measures. We say
that X represents u.

THEOREM & - Let u (/)=$(/) (T), for every f^ h (E). Then u
is a conical measure on E ; let X be the measure on S representing u.
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77^ mapping f | T -^ $ (/), /E ^(E),^ a vector lattice isomorphism
and an isometry of the dense subset h (E) | T of L1 (X) onto H.

There exists an infective mapping 7 : R (H) -> S (X) which is a
Boolean algebra isomorphism of R (H) o^o 7 (7? (H)) and also a
homeomorphism of R (H) in its r (Vi)-topology onto j (R (H))m ̂
relative T (\)-topology and 7 (7? (H)) is T (\)-dense in S (X).

Proof. — Clearly, u is a conical measure.
Given X E 7?, let

^xW^C/XX^/e /zCE) .

Then i;x ls a conical measure on E and v^ < ^ = v^. Let X^ be the
measure on S which represents v^. Then X^ ^ X = X-p. Since X is a
direct sum of finite measures, the Radon-Nikodym theorem is
applicable [10, Theorem 5.1]. Hence there exists an 5-measurable
function g^ on T such that 0 < g^ < 1,

X^(X)=.^^X

for every X G S, and
^xC/ )= f f ( t ) g ^ ( t ) d \ ( t ) .

t/T

for every /G h (E). The relations ^-x -t" ^x = ^ and ^x A ^T-X = °
imply that g^-x (^) + ^x (r) = 1 and rnin ^T-X (^ ^x (r)} = 0»
X-almost everywhere on T. It follows that g^ is X-equivalent to
the characteristic function of a set in S ; denote it and also its
X-equivalence class by 7 (X). It is clear that 7 (X) depends on the
H-equivalence class [X]^ only and not on its individual representative
X. Hence 7 is well-defined on R (H).

Accepting these conventions it is clear that 7 : R (H) -> S (X)
is injective and that it is a Boolean algebra isomorphism of R (H)
onto 7 (R (H)).

These definitions also give that

^(X)= $(jL(*)(X)=^(/Z*)=^/2* (t)g^(t)d\(t) =

= / ^* (t) d X (r),
7(X)
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for every jn G H and X G R. More generally,

$(/)(X)=^/(OrfX(r),

for every /E A (E) and X E 7^. Since <I> is a vector lattice isomorphism,
the variation I $ (/) I of $ (/) is equal to $(|/|), where I / I is the
absolute value of /. It then follows that

II^WII = 1$ ( / )1 (T )=$ ( | / | ) (T )= / \f(t)\d\(t)=
7(T)

== J^ | / | t | r fX= ||/ | t||p

That is, the norm of $ (/) as an element of baCR) is equal to the
Z^norm of/ |t . This establishes the isometry of h (E) | f and H.

Moreover, since

I I ^ I I = I JLI | (T) = sup { I /x (X) | + | JLI (Y) | : X , Y E R , X U Y == 0},

we have also

l l ^ l l i = s u p { | / ( ^ r f X | + | / < ^ r f X l : X , Y E ^ , X n Y = 0 } , (15)
7(X) 7(Y)

for every ^ E /z (E) | f. Now, (15) holds also for every ^p E L1 (X),
since A (E) | f is dense in L1 (X). It follows that, if <p G £1 (X) and
if the integral of <p vanishes on every set 7 (X), with X G R, then (p
is X-equivalent to 0. This implies that 7 (R) is r (X)-dense in S (X).

We say that the algebra R separates the points of the space T
if, for every ^ ^ in T, ^ ^= ^, there exists X G 7? such that ^ E X
and t^ $ X.

There is no loss of generality in assuming that R indeed
separates points of T. If R does not separate points of T we introduce
the equivalence relation in T by declaring ^ = ^ if and only if
t^ G X, implies ^ ̂  X, for every X E R. Then, if we replace T by-^/ 1^1
so obtained set T of equivalence classes and R by its image R under
the natural mapping of T into T, we obtain a situation where the
algebra separates the points of the space T and ba(7?) coincides
with ba (R) both as a vector lattice and as a Banach space.

We say that the vector lattice H C ba (R) separates the algebra
R, if the equivalence classes [X^, X E / ? , are reduced to individual



96 I. KLUVANEK

sets ; i.e. there is not another element in R but X which is equivalent
to X, for every X G R. In this case R (H) = R as sets and also as
Boolean algebras.

In particular, H separates R if H contains all Dirac measures
carried by points of T.

COROLLARY 9. - // the algebra R separates the points of the
space T and if the vector lattice H separates R, then there exists an
injection § : T -^ t such that § (X) = 7 (X) n § (T), for every
X^R.

Proof. — Since X is a direct sum of finite measures, S (\) is a
complete Boolean algebra. For every t E T, let

[XJ^ = U 7 (X)
rexe R

The element [XJ^ is not equal to [0]^. To prove that it suffice to
notice that, since X is a direct sum of finite measures, the dual of
the Banach space L1 (X) is L°° (X) ; further each 7(X) represents
an element of the unit ball in L°° (X), so it suffices to use the
weak-star compactness of the unit ball and notice that the finite
intersections are all of norm 1.

Since H separates R and R separates T, the elements [X^]^
and [X^ ]^ are disjoint in S (X) if ^ ^ t^. Now we use again the
fact that X is a direct sum of finite measure to deduce the existence
of lifting in L°° (X) or in S (X) and, hence, the possibility to choose
the representations X^ of [XJ^ in such a way that they are disjoint
as sets (have no points in common) if they correspond to different
elements of T.

Let § (0 be an arbitrary element of Xp for each t € T. Then
the mapping § : T -> T has the claimed properties.

COROLLARY 10. -IfR (H) is T (HYcomplete then 7 : R (H) -^(X)
is a Boolean algebra isomorphism of R (H) onto S (X) and, hence,
R (H) is a complete Boolean algebra.
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3. Representation of vector measures.

Let E be a locally convex topological vector space.
Let T be an abstract space and let R be an algebra of subsets

of T.

An additive and bounded mapping m : R -> E is termed a
pre-measure. The boundedness means that the range

m (R) = [m (X) : X E R}

is a bounded subset of E.
If R is a-algebra and m is a-additive then it is termed a vector

measure (shortly a measure). In this case the boundedness is a
consequence of other assumptions.

Given a pre-measure m : R -^ E, declare two elements X^ and
X^ ofR to be m-equivalent if m (X) == 0 for every XCX^AX^Xe R.
The w-equivalence class of an element X £ R is denoted by [X]^
whenever the distinction between a set and its equivalence class is
essential. The family of all m-equivalence classes is denoted by
R (m). Again, R (m) is considered a Boolean algebra equal to R
modulo the ideal of sets m-equivalent to 0.

Let U be a convex symmetric neighborhood of 0 in E and
let U° be its polar. Define the pseudo-metric dy on R and on R (m)
by putting

rfy (X , Y) = sup { I x ' o m | (X A Y) : x G U°}.

for every X , Y in R.

The system of pseudo-metrics rfy, for all symmetric convex
neighbourhoods U, defines a topology and a uniform structure
on R and on R (m) ; this topology and the uniformity will be denoted
by T (m). On R (m), r (m) is separated (Hausdorff).

If R (m) is a complete space in the uniform structure r(m),
the pre-measure m is termed closed [5].

Let S be a-algebra of subsets of T and let X be a non-negative
a-additive mesure on S (admitting also value oo). A function / : T -^ E
is said to be integrable if, for every x G E\ the real-valued function
x9 o / is integrable and if, for every X E 5, there exists an element
Xx G E such that
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x^)=f^xlofd\=\(x.f).

We write

x^ =^^d x=xx</).xe5•.
Also X,, (f) = X (/•).

It is clear that if E is weakly complete then / is integrable
if and only if x o/is integrable for every x'G E*.

If / : T -> E is integrable with respect to X, the mapping
m - . S ^ E defined by m (X) = X^ (f), X £ S, is a vector measure
This is in virtue of the Orlicz-Pettis lemma. This measure m is
called the indefinite integral of / with respect to X.

LEMMA 1 1 . - Let T be a space, S a-algebra of subsets of T
and X a measure on S. Let E be a locally convex topological vector
space with the weak completion E'*. Let f : T -^ E'* be a \-integrable
function such that X^ (f) G E,for every X G S. Let m be the indefinite
integral of f with respect to X. Then the topology T (m) is weaker
than T (X). // X is localizable then m is a closed vector measure.

Proof. - To show that T (m) is a weaker topology than T (X)
amounts to showing that if Xx (M) ̂  0, X <= S, for every ^(= L1 (X)
then x ° m (X) -> 0 uniformly for x € U° whenever U is a convex
symmetric neigbourhood of 0 in E.

If U is such a neighbourhood, there exists, by the Rybakov's
theorem [9], an element x'y G U° such that the measures x o m, x ' <= U°,
are uniformly absolutely continuous with respect to x'y o m. Hence,'
if Xx (I x'o o f 1) -1- 0, X £ S, then x o m (X) ̂  0 uniformly with
respect to x ' £ U°.

The statement that m is a closed measure if X is localizable is
the content of Theorem IV.7.3 in [8]. An alternative proof can be
obtained as follows.

Take a T (w)-Cauchy net X, in S. It represents a net of measurable
functions, the characteristic functions of the sets X,, with values
in [0,1] ; in fact, with values only 0 and 1. The set of measurable
functions ^ with values in [0,1] (more precisely, w-equivalence classes
of such functions) is a compact space in the topology, let us denote


