Mean curvature flow and self-similar submanifolds
Séminaire de théorie spectrale et géométrie, Volume 21 (2002-2003), pp. 43-53.
@article{TSG_2002-2003__21__43_0,
     author = {Anciaux, Henri},
     title = {Mean curvature flow and self-similar submanifolds},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {43--53},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {21},
     year = {2002-2003},
     mrnumber = {2052823},
     zbl = {1053.53044},
     language = {en},
     url = {http://www.numdam.org/item/TSG_2002-2003__21__43_0/}
}
TY  - JOUR
AU  - Anciaux, Henri
TI  - Mean curvature flow and self-similar submanifolds
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2002-2003
SP  - 43
EP  - 53
VL  - 21
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/item/TSG_2002-2003__21__43_0/
LA  - en
ID  - TSG_2002-2003__21__43_0
ER  - 
%0 Journal Article
%A Anciaux, Henri
%T Mean curvature flow and self-similar submanifolds
%J Séminaire de théorie spectrale et géométrie
%D 2002-2003
%P 43-53
%V 21
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/item/TSG_2002-2003__21__43_0/
%G en
%F TSG_2002-2003__21__43_0
Anciaux, Henri. Mean curvature flow and self-similar submanifolds. Séminaire de théorie spectrale et géométrie, Volume 21 (2002-2003), pp. 43-53. http://www.numdam.org/item/TSG_2002-2003__21__43_0/

[AbLa] U. Abresch, J. Langer, The normalized curves hortening flow and homothetic solutions, J. of differential geometry, 23 ( 1986), 175-196 | MR | Zbl

[Anc] H. Anciaux, Self-similar equivariant submanifolds in ℝ2n preprint, available at http://www.phys.univ-tours.fr/~anciaux/papers/self.ps

[Ang] S. Angenent, Shrinking donuts, in Nonlinear diffusion reaction equations & their equilïbrium, States3, editor N.G. Lloyd, Birkauser, Boston, 1992. | MR

[AIV] S. Angenent, T. Ilmanen, Jj.L. Velázquez, Fattening from smooth initial data in mean curvature flow, in préparation.

[CaUr] I. Castro, F. Urbano, On a Minimal Lagrangian Submanifold of Cn Foliated by Spheres, Mich. Math. J., 46 ( 1999), 71-82 | MR | Zbl

[Ch] D.L. Chopp, Numerical Computations of Self-Similar Solutions for Mean Curvature Flow, Exper. Math. 3 ( 1994), 1-16 | MR | Zbl

[EMS] J. Escher, U. Mayer, G. Simonett, The surface tension flow for immersed hypersurfaces, SIAM J. Math. Anal. 29 ( 1998), 1419-1433 | MR | Zbl

[Gr] M. Grayson, The heat equation shrinks embedded plane curves to round circles Journal of Differential Geometry, 26 ( 1987), 285. | MR | Zbl

[HaLa] R. Harvey, H.B. Lawson, Calibrated geometries, Actz Mathematica, 148 ( 1982), 47-157. | MR | Zbl

[Ham] R. Hamilton, Three manifolds with positive Ricci curvatures, J. of Diff. Geom. 24 ( 1982), 255-306. | MR | Zbl

[Hu] G. Huisken, Flow by Mean Curvature of Convex Surfaces into Spheres, Journal of Differential Geometry, 20 ( 1984), 237-266. | MR | Zbl

[Hull] G. Huisken and T. Ilmanen The inverse mean curvature flow and the Riemannian Penrose inequality available to http://www.math.ethz.ch/~ilmanen./papers/hp.ps. | Zbl

[II] Tom Ilmanen, Lectures on the mean curvature flow, http://www.math.ethz.ch/~ilmanen/papers/notes.ps.

[KuSc] E. Kuwert AND R. Schatlze, The Willmore flow with small initial energy, Journal of Differential Geometry, 57 ( 1998),1-22. | Zbl

[Oh] Y. G. Oh, Second variation and stabilities of minimal Lagrangian submanifolds in Kaher manifolds, Invent. Math., 101 ( 1990), 501-519. | EuDML | MR | Zbl

[Pe] G. Perelman, The entropy formula for the Ricci flow and its geometrie application, preprint DG/0211159. | Zbl

[Sm] K. Smoczyk, Angle theorems for the Lagrangian mean curvature flow, preprint dg-da/9605005. | MR | Zbl

[Wa] M.-T. Wang, Mean Curvature Flows in Higher Codimension, proceedings of International Congress of Chinese Mathematicians, 2001.

[Wi] T.J. Willmore, Riemannian geometry, Oxford Sciences Publications. | MR | Zbl