An alternative proof of a theorem of Aldous concerning convergence in distribution for martingales
Séminaire de probabilités de Strasbourg, Volume 33 (1999), pp. 334-338.
@article{SPS_1999__33__334_0,
     author = {Pratelli, Maurizio},
     title = {An alternative proof of a theorem of {Aldous} concerning convergence in distribution for martingales},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {334--338},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {33},
     year = {1999},
     mrnumber = {1768006},
     zbl = {0954.60037},
     language = {en},
     url = {http://www.numdam.org/item/SPS_1999__33__334_0/}
}
TY  - JOUR
AU  - Pratelli, Maurizio
TI  - An alternative proof of a theorem of Aldous concerning convergence in distribution for martingales
JO  - Séminaire de probabilités de Strasbourg
PY  - 1999
SP  - 334
EP  - 338
VL  - 33
PB  - Springer - Lecture Notes in Mathematics
UR  - http://www.numdam.org/item/SPS_1999__33__334_0/
LA  - en
ID  - SPS_1999__33__334_0
ER  - 
%0 Journal Article
%A Pratelli, Maurizio
%T An alternative proof of a theorem of Aldous concerning convergence in distribution for martingales
%J Séminaire de probabilités de Strasbourg
%D 1999
%P 334-338
%V 33
%I Springer - Lecture Notes in Mathematics
%U http://www.numdam.org/item/SPS_1999__33__334_0/
%G en
%F SPS_1999__33__334_0
Pratelli, Maurizio. An alternative proof of a theorem of Aldous concerning convergence in distribution for martingales. Séminaire de probabilités de Strasbourg, Volume 33 (1999), pp. 334-338. http://www.numdam.org/item/SPS_1999__33__334_0/

[1] Aldous D.: Stopping Times and Tightness. Ann. Prob. 6, 335-340 (1979) | MR | Zbl

[2] Aldous D.: Stopping Times and Tightness II. Ann. Prob. 17, 586-595 (1989) | MR | Zbl

[3] Dudley R.M.: Distances of Probability measures and Random Variables. Ann. of Math. Stat. 39, 1563-1572 (1968) | MR | Zbl

[4] Jacod J., Shiryaev A.N.: Limit theorems for stochastic processes. Berlin, Heidelberg, New York: Springer 1987. | MR | Zbl

[5] Kurtz T.G.: Random time changes and convergence in distribution under the Meyer-Zheng conditions Ann. Prob. 19, 1010-1034 (1991) | MR | Zbl

[6] Meyer P.A., Zheng W.A.: Tigthness criteria for laws of semimartingales. Ann. Inst. Henri Poincaré Vol. 20 No. 4, 353-372 (1984) | Numdam | MR | Zbl

[7] Mulinacci S., Pratelli M.: Functional convergence of Snell envelopes: Applications to American options approximations. Finance Stochast. 2, 311-327 (1998) | MR | Zbl