An Itô type isometry for loops in 𝐑 d via the brownian bridge
Séminaire de probabilités de Strasbourg, Volume 31 (1997), pp. 225-231.
@article{SPS_1997__31__225_0,
     author = {Gosselin, Pierre and Wurzbacher, Tilmann},
     title = {An {It\^o} type isometry for loops in $\mathbf {R}^d$ via the brownian bridge},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {225--231},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {31},
     year = {1997},
     mrnumber = {1478731},
     zbl = {0884.60046},
     language = {en},
     url = {http://www.numdam.org/item/SPS_1997__31__225_0/}
}
TY  - JOUR
AU  - Gosselin, Pierre
AU  - Wurzbacher, Tilmann
TI  - An Itô type isometry for loops in $\mathbf {R}^d$ via the brownian bridge
JO  - Séminaire de probabilités de Strasbourg
PY  - 1997
SP  - 225
EP  - 231
VL  - 31
PB  - Springer - Lecture Notes in Mathematics
UR  - http://www.numdam.org/item/SPS_1997__31__225_0/
LA  - en
ID  - SPS_1997__31__225_0
ER  - 
%0 Journal Article
%A Gosselin, Pierre
%A Wurzbacher, Tilmann
%T An Itô type isometry for loops in $\mathbf {R}^d$ via the brownian bridge
%J Séminaire de probabilités de Strasbourg
%D 1997
%P 225-231
%V 31
%I Springer - Lecture Notes in Mathematics
%U http://www.numdam.org/item/SPS_1997__31__225_0/
%G en
%F SPS_1997__31__225_0
Gosselin, Pierre; Wurzbacher, Tilmann. An Itô type isometry for loops in $\mathbf {R}^d$ via the brownian bridge. Séminaire de probabilités de Strasbourg, Volume 31 (1997), pp. 225-231. http://www.numdam.org/item/SPS_1997__31__225_0/

[BR] M.J. Bowick and S.G. Rajeev, The holomorphic geometry of closed bosonic string theory and Diff(S1)/S1, Nucl. Phys. B 293 (1987) 348-384. | MR

[DMM] C. Dellacherie, B. Maisonneuve et P.-A. Meyer, Probabilités et Potentiel. Chapitres X VII à XXIV (Hermann, Paris 1992).

[GW] P. Gosselin and T. Wurzbacher, A stochastic approach to the Virasoro anomaly in quantization of strings in flat space, Preprint 1996. | MR

[HLP] G. Hardy, J.E. Littlewood and G. Pólya, Inequalities (Cambridge at the University Press 1934). | JFM | Zbl

[HT] W. Hackenbroch undA. Thalmaier, Stochastische Analysis (B.G.Teubner, Stuttgart 1994). | MR | Zbl

[JY] T. Jeulin et M. Yor, Inégalité de Hardy, semi-martingales, et faux-amis, Séminaire de Probabilités XIII (1977/78), LNM 721, 332-359. | Numdam | MR | Zbl

[M] P.-A. Meyer, Quantum Probability for Probabilists (Springer LNM 1538, Berlin Heidelberg 1993). | MR | Zbl

[N] J. Neveu, Processus aléatoires gaussiens (Les Presses de l'Université de Montréal 1968). | MR | Zbl

[PS] A. Pressley and G. Segal, Loop groups (Oxford University Press 1986). | MR | Zbl