@article{SPS_1996__30__207_0,
author = {Shi, Zhan},
title = {How long does it take a transient {Bessel} process to reach its future infimum?},
journal = {S\'eminaire de probabilit\'es},
pages = {207--217},
year = {1996},
publisher = {Springer - Lecture Notes in Mathematics},
volume = {30},
mrnumber = {1459484},
zbl = {0857.60024},
language = {fr},
url = {https://www.numdam.org/item/SPS_1996__30__207_0/}
}
TY - JOUR AU - Shi, Zhan TI - How long does it take a transient Bessel process to reach its future infimum? JO - Séminaire de probabilités PY - 1996 SP - 207 EP - 217 VL - 30 PB - Springer - Lecture Notes in Mathematics UR - https://www.numdam.org/item/SPS_1996__30__207_0/ LA - fr ID - SPS_1996__30__207_0 ER -
Shi, Zhan. How long does it take a transient Bessel process to reach its future infimum?. Séminaire de probabilités, Tome 30 (1996), pp. 207-217. https://www.numdam.org/item/SPS_1996__30__207_0/
[B] (1991). Sur la décomposition de la trajectoire d'un processus de Lévy spectralement positif en son minimum. Ann. Inst. H. Poincaré Probab. Statist. 27 537-547. | Zbl | MR | Numdam
[C] (1994). Processus de Lévy et Conditionnement. Thèse de Doctorat de l'Université Paris VI.
[C-T] & (1962). First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc. 103 434-450. | Zbl
[Cs-F-R] , & (1987). On the maximum of a Wiener process and its location. Probab. Th. Rel. Fields 76 477-497. | Zbl
[G-S] & (1996). The occupation time of Brownian motion in a ball. J. Theoretical Probab.9 429-445. | Zbl
[I-K] & (1979). Special functions, Stieltjes transforms and infinite divisibility. SIAM J. Math. Anal.10 884-901. | Zbl
[Ke] (1978). Some probabilistic properties of Bessel functions. Ann. Probab. 6 760-770. | Zbl | MR
[Kh] (1995). The gap between the past supremum and the future infimum of a transient Bessel process. Séminaire de Probabilités XXIX(Eds.: J. Azéma, M. Emery, P.-A. Meyer & M. Yor. Lecture Notes in Mathematics 1613, pp. 220-230. Springer, Berlin. | Zbl | Numdam
[K-S] & (1964). A note on the Borel-Cantelli lemma. Illinois J. Math.8 248-251. | Zbl
[M] (1977). Random times and decomposition theorems. In: "Probability": Proc. Symp. Pure Math. (Univ. Illinois, Urbana, 1976) 31 pp. 91-103. AMS, Providence, R.I. | Zbl | MR
[P] (1975). One-dimensional Brownian motion and the three-dimen-sional Bessel process. Adv. Appl. Prob.7 511-526. | Zbl | MR
[R-Y] & (1994). Continuous Martingales and Brownian Motion. (2nd edition) Springer, Berlin. | Zbl
[W1] (1970). Decomposing the Brownian path. Bull. Amer. Math. Soc.76 871-873. | Zbl | MR
[W2] (1974). Path decomposition and continuity of local time for one-dimensional diffusions, I. Proc. London Math. Soc. (3) 28 738-768. | Zbl | MR






