@article{SPS_1991__25__24_0,
author = {Sch\"urmann, Michael},
title = {The {Az\'ema} martingales as components of quantum independent increment processes},
journal = {S\'eminaire de probabilit\'es},
pages = {24--30},
year = {1991},
publisher = {Springer - Lecture Notes in Mathematics},
volume = {25},
mrnumber = {1187766},
zbl = {0745.60043},
language = {fr},
url = {https://www.numdam.org/item/SPS_1991__25__24_0/}
}
TY - JOUR AU - Schürmann, Michael TI - The Azéma martingales as components of quantum independent increment processes JO - Séminaire de probabilités PY - 1991 SP - 24 EP - 30 VL - 25 PB - Springer - Lecture Notes in Mathematics UR - https://www.numdam.org/item/SPS_1991__25__24_0/ LA - fr ID - SPS_1991__25__24_0 ER -
Schürmann, Michael. The Azéma martingales as components of quantum independent increment processes. Séminaire de probabilités, Tome 25 (1991), pp. 24-30. https://www.numdam.org/item/SPS_1991__25__24_0/
[1] , , : Quantum stochastic processes. Publ. RIMS, Kyoto Univ. 18, 97-133 (1982) | Zbl | MR
[2] , , : Quantum independent increment processes on superalgebras. Math. Z. 198, 451-477 (1988) | Zbl | MR
[3] : Sur les fermes aleatoires. In: Azema, J., Yor, M. (eds.) Sem. Prob. XIX. (Lect. Notes Math., vol. 1123). Berlin Heidelberg New York: Springer 1985 | Zbl | MR | Numdam
[4] : *-Bialgebren in der Quantenstochastik. Dissertation, Heidelberg 1989 | Zbl
[5] , : The relations of the non-commutative coefficient algebra of the unitary group. SFB-Preprint Nr. 460, Heidelberg 1988
[6] : Symmetric Hilbert spaces and related topics. (Lect. Notes Math. vol. 261). Berlin Heidelberg New York : Springer 1972 | Zbl | MR
[7] : Azema martingales and quantum stochastic calculus. Preprint 1989
[8] , : Positive definite kernels, continuous tensor products, and central limit theorems of probability theory. (Lect. Notes Math. vol. 272). Berlin Heidelberg New York : Springer 1972 | Zbl | MR
[9] : Noncommutative stochastic processes with independent and stationary increments satisfy quantum stochastic differential equations. To appear in Probab. Th. Rel. Fields | Zbl | MR
[10] : A class of representations of involutive bialgebras. To appear in Math. Proc. Cambridge Philos. Soc. | Zbl | MR
[11] : Quantum stochastic processes with independent additive increments. Preprint, Heidelberg 1989 | MR






