Gradient flows in Wasserstein spaces and applications to crowd movement
Séminaire Équations aux dérivées partielles (Polytechnique) (2009-2010), Talk no. 27, 16 p.

Starting from a motivation in the modeling of crowd movement, the paper presents the topics of gradient flows, first in n , then in metric spaces, and finally in the space of probability measures endowed with the Wasserstein distance (induced by the quadratic transport cost). Differently from the usual theory by Jordan-Kinderlehrer-Otto and Ambrosio-Gigli-Savaré, we propose an approach where the optimality conditions for the minimizers of the optimization problems that one solves at every time step are obtained by looking at perturbation of the form ρ ε =(1-ε)ρ+ερ ˜ instead of ρ ε =(id+εξ) # ρ. The ideas to make this approach rigorous are presented in the case of a Fokker-Planck equation, possibly with an interaction term, and then the paper is concluded by a section, where this method is applied to the original problem of crowd motion (referring to a recent paper in collaboration with B. Maury and A. Roudneff-Chupin for the details).

@article{SEDP_2009-2010____A27_0,
     author = {Santambrogio, Filippo},
     title = {Gradient flows in Wasserstein spaces and applications to crowd movement},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2009-2010},
     note = {talk:27},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_2009-2010____A27_0}
}
Santambrogio, Filippo. Gradient flows in Wasserstein spaces and applications to crowd movement. Séminaire Équations aux dérivées partielles (Polytechnique) (2009-2010), Talk no. 27, 16 p. http://www.numdam.org/item/SEDP_2009-2010____A27_0/

[1] L. Ambrosio, Movimenti minimizzanti, Rend. Accad. Naz. Sci. XL Mem. Mat. Sci. Fis. Natur. 113 (1995) 191–246. | MR 1387558 | Zbl 0957.49029

[2] L. Ambrosio, N. Gigli, G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics (ETH Zürich, 2005). | MR 2129498 | Zbl 1145.35001

[3] L. Ambrosio, G. Savaré, Gradient flows of probability measures, Handbook of differential equations, Evolutionary equations 3, ed. by C.M. Dafermos and E. Feireisl (Elsevier, 2007). | MR 2549368 | Zbl 1203.35002

[4] N. Bellomo, C. Dogbe, On the modelling crowd dynamics from scaling to hyperbolic macroscopic models, Math. Mod. Meth. Appl. Sci. 18 Suppl. (2008) 1317–1345. | MR 2438218 | Zbl 1198.92036

[5] G. Buttazzo, F. Santambrogio, A model for the optimal planning of an urban area, SIAM J. Math. Anal. 37(2) (2005) 514–530. | MR 2176114 | Zbl 1109.49027

[6] R.M. Colombo, M.D. Rosini, Pedestrian flows and non-classical shocks, Math. Methods Appl. Sci. 28 (2005) 1553–1567. | MR 2158218 | Zbl 1108.90016

[7] V. Coscia, C. Canavesio, First-order macroscopic modelling of human crowd dynamics, Math. Mod. Meth. Appl. Sci. 18 (2008) 1217–1247. | MR 2438214 | Zbl 1171.91018

[8] E. De Giorgi, New problems on minimizing movements, Boundary Value Problems for PDE and Applications, C. Baiocchi and J. L. Lions eds. (Masson, 1993) 81–98. | MR 1260440 | Zbl 0851.35052

[9] D. Helbing, A fluid dynamic model for the movement of pedestrians, Complex Systems 6 (1992) 391–415. | MR 1211939 | Zbl 0776.92016

[10] L.F. Henderson, The statistics of crowd fluids, Nature 229 (1971) 381–383.

[11] R. L. Hughes, A continuum theory for the flow of pedestrian, Transport. Res. Part B 36 (2002) 507–535.

[12] R. Jordan, D. Kinderlehrer, F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal. 29(1) (1998) 1–17. | MR 1617171 | Zbl 0915.35120

[13] L. V. Kantorovich, On the transfer of masses, Dokl. Akad. Nauk. SSSR 37 (1942) 227–229.

[14] B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic crowd motion model of gradient flow type, Mat. Mod. Meth. Appl. Sci. Vol. 20 No. 10 (2010), 1787–1821 | MR 2735914 | Zbl 1223.35116

[15] B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Handling congestion in crowd motion modeling, in preparation.

[16] B. Maury, J. Venel, Handling of contacts in crowd motion simulations, Traffic and Granular Flow (Springer, 2007). | Zbl 1161.90349

[17] B. Maury, J. Venel, Handling congestion in crowd motion modeling, in preparation.

[18] R. J. McCann, A convexity principle for interacting gases. Adv. Math. (128), no. 1, 153–159, 1997. | MR 1451422 | Zbl 0901.49012

[19] F. Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations 26(1–2) (2001) 101–174. | MR 1842429 | Zbl 0984.35089

[20] B. Piccoli, A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow (2008) to appear. | MR 2771664

[21] C. Villani, Topics in optimal transportation, Grad. Stud. Math. 58 (AMS, Providence 2003). | MR 1964483 | Zbl 1106.90001

[22] C. Villani, Optimal transport, old and new, Grundlehren der mathematischen Wissenschaften 338 (2009). | MR 2459454 | Zbl 1156.53003