Un modèle asymptotique pour les ondes internes de grande amplitude
Séminaire Équations aux dérivées partielles (Polytechnique) (2009-2010), Talk no. 19, 14 p.

We consider in this talk the “shallow-water/shallow-water" asymptotic model obtained in [3] from the two-layer system with rigid lid, for the description of large amplitude internal waves. For one-dimensional interfaces, this system is of hyperbolic type and its local wellposedness does not raise serious difficulties, though other issues (blow -up, loss of hyperbolicity,...) turn out to be delicate. For two- dimensional interfaces, the system turns out to be nonlocal. We prove that it conserves some properties of “hyperbolic type" and prove that the associated Cauchy problem is locally well posed in suitable Sobolev classes provided some natural restrictions are imposed on the data.

On considère dans cet exposé le modèle asymptotique “shallow-water/shallow-water" obtenu dans [3] à partir du système d’Euler à deux couches avec fond plat et toit rigide pour décrire la propagation d’ondes internes de grande amplitude. En dimension d’espace un, ce système est de type hyperbolique et la théorie locale du problème de Cauchy ne pose pas de difficultés majeures, même si d’autres questions (explosion en temps fini, perte d’hyperbolicité) s’avèrent délicates. En dimension deux d’espace par contre, le système est non local. On montre qu’il conserve cependant des propriétés “de type hyperbolique" et que le problème de Cauchy associé est localement bien posé sous des conditions convenables sur les conditions initiales.

@article{SEDP_2009-2010____A19_0,
     author = {Saut, Jean-Claude},
     title = {Un mod\`ele asymptotique pour les ondes internes de grande amplitude},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2009-2010},
     note = {talk:19},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_2009-2010____A19_0}
}
Saut, Jean-Claude. Un modèle asymptotique pour les ondes internes de grande amplitude. Séminaire Équations aux dérivées partielles (Polytechnique) (2009-2010), Talk no. 19, 14 p. http://www.numdam.org/item/SEDP_2009-2010____A19_0/

[1] B. Alvarez-Samaniego and D. Lannes, Large time existence for 3D water-waves and asymptotics, Inventiones Math. 171 (2008), 485-541. | MR 2372806 | Zbl 1131.76012

[2] T.B.Benjamin and T.J.Bridges, Reappraisal of the Kelvin-Helmholtz problem.Part I. Hamiltonian structure, J. Fluid Mech. 333 (1997) 301-325. | MR 1437021 | Zbl 0892.76027

[3] J. Bona, D. Lannes, and J.-C. Saut, Asymptotic models for internal waves, J. Math. Pures Appl. 89 (2008) 538-566. | MR 2424620 | Zbl 1138.76028

[4] D. Bresch and M. Renardy, Well-posedness of two-layer shallow water flow between two horizontal rigid plates, preprint 2010. | MR 2773780

[5] S. Chandrasekhar, Hydrodynamic and hydromagnetic stability, Oxford : Clarendon Press (1961). | MR 128226 | Zbl 0142.44103

[6] W. Choi and R. Camassa, Fully nonlinear internal waves in a two-fluid system, J. Fluid Mech. 396 (1999) 1-36. | MR 1719287 | Zbl 0973.76019

[7] W. Craig, P. Guyenne and H. Kalisch, Hamiltonian long-wave expansions for free surfaces and interfaces, Comm. Pure. Appl. Math. 58 (2005) 1587-1641. | MR 2177163 | Zbl 1151.76385

[8] W. Craig, C. Sulem, and P.-L. Sulem, Nonlinear modulation of gravity waves : a rigorous approach, Nonlinearity 5 (1992), 497-522. | MR 1158383 | Zbl 0742.76012

[9] Cung The Anh, Influence of surface tension and bottom topography on internal waves, M3AS, 19, 12 (2009), 2145-2175. | MR 2599657 | Zbl pre05666260

[10] V. Duchêne, Asymptotic shallow water models for internal waves in a two-fluid system with a free surface, arXiv : 0906.0839 (June 2009). | MR 2729438

[11] P. Guyenne, D. Lannes and J.-C. Saut, On the Cauchy problem for a nonlocal system modelling large amplitudes internal waves, Nonlinearity 23 (2010), 237-275. | MR 2578478 | Zbl pre05674973

[12] T.Y. Hou and P. Zhang, Growth rates for the linearized motion of 3-D fluid interfaces with surface tension far from equilibrium, Asian J. Math.. 2 (1998) 263-288. | MR 1639548 | Zbl 0926.76046

[13] T. Iguchi, N. Tanaka, and A. Tani, On the two-phase free boundary problem for two-dimensional water waves, Math. Ann. 309 (1997) 199-223. | MR 1474190 | Zbl 0897.76017

[14] D. Lannes, Sharp estimates for pseudo-differential operators with symbols of limited smoothness and commutators, J. Funct. Anal. 232 (2006) 495-539. | MR 2200744 | Zbl 1099.35191

[15] D. Lannes, A stability criterion for two-fluid interfaces and applications, arXiv. 1005.4565v1 (May 2010).

[16] D. Lannes and J.-C. Saut, en préparation.

[17] P. Milewski, E. Tabak, C. Turner, R. Rosales, and F. Menzaque, Nonlinear stability of two-layer flows, Commun. Math. Sci. 2 (2004) 427-442. | MR 2118852 | Zbl 1084.76031

[18] K. Ohi and T. Iguchi, A two-phase problem for capillary-gravity waves and the Benjamin-Ono equation, Disc. Cont. Dyn. Systems A, 23, 4 (2009), 1205-1240. | MR 2461848 | Zbl 1155.35416

[19] M. E. Taylor, Partial differential equations. III. Nonlinear equations, Corrected reprint of the 1996 original. Applied Mathematical Sciences, 117. Springer-Verlag, New York, 1997. | MR 1477408 | Zbl 0869.35004

[20] V.E.Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys.2 (1968) 190-194.