Solutions globales d’énergie infinie pour l’équation des ondes critique
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2006-2007), Exposé no. 11, 31 p.

Nous considérons dans cet article l’équation des ondes semilinéaire critique

(NLW)2*-1u+|u|2*-2u=0u|t=0=u0tu|t=0=u1,

posée dans tout l’espace d , avec 2 * =2d d-2· Shatah et Struwe [31] ont prouvé que si les données initiales sont d’énergie finie, c’est à dire si (u 0 ,u 1 )H ˙ 1 ×L 2 , alors il existe une solution globale. Planchon [22] a montré que c’est aussi le cas pour certaines données initiales d’énergie infinie : il suffit que les données initiales soient de norme petite dans B ˙ 2, 1 ×B ˙ 2, 0 . Nous construisons ici des solutions globales de (NLW) 2 * -1 pour des données initiales d’énergie infinie arbitrairement grandes, en utilisant deux méthodes qui reviennent à interpoler entre solutions d’énergie finie et solutions d’énergie infinie : la méthode de Bourgain et la méthode de Calderón. Ces deux méthodes donnent des résultats complémentaires.

@article{SEDP_2006-2007____A11_0,
     author = {Germain, Pierre},
     title = {Solutions globales d{\textquoteright}\'energie infinie pour l{\textquoteright}\'equation des ondes critique},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:11},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2006-2007},
     mrnumber = {2385198},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_2006-2007____A11_0/}
}
TY  - JOUR
AU  - Germain, Pierre
TI  - Solutions globales d’énergie infinie pour l’équation des ondes critique
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:11
PY  - 2006-2007
DA  - 2006-2007///
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/item/SEDP_2006-2007____A11_0/
UR  - https://www.ams.org/mathscinet-getitem?mr=2385198
LA  - fr
ID  - SEDP_2006-2007____A11_0
ER  - 
Germain, Pierre. Solutions globales d’énergie infinie pour l’équation des ondes critique. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2006-2007), Exposé no. 11, 31 p. http://www.numdam.org/item/SEDP_2006-2007____A11_0/

[1] H. Bahouri, P. Gérard, High frequency approximation of solutions to critical non linear wave equations, American Journal of Mathematics 121, 131-175 (1999) | MR 1705001 | Zbl 0919.35089

[2] H. Bahouri, J. Shatah, Global estimate for the critical semilinear wave equation, Annales de l’Institut Henri Poincaré - Analyse non-linéaire, 15, 783-789 (1998) | Numdam | Zbl 0924.35084

[3] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Annales scientifiques de l’Ecole normale supérieure 14, 209-246 (1981) | Numdam | Zbl 0495.35024

[4] J. Bourgain, Global solutions of nonlinear Schrödinger equations, American Mathematical Society Colloquium Publications 46, American Mathematical Society, Providence, RI (1999) | MR 1691575 | Zbl 0933.35178

[5] J.-Y. Chemin, N. Lerner, Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes, Journal of Differential Equations 121 314–328 (1995) | MR 1354312 | Zbl 0878.35089

[6] C. Calderón, Existence of weak solutions for the Navier-Stokes equations with initial data in L p , Transactions of the American Mathematical Society 318, 179-200 (1990) | MR 968416 | Zbl 0707.35118

[7] I. Gallagher, F. Planchon, On global infinite energy solutions to the Navier-Stokes equations, Archive for Rational and Mechanical Analysis 161, 307-337 (2002) | MR 1891170 | Zbl 1027.35090

[8] I. Gallagher, F. Planchon, On global solutions to a defocusing semi-linear wave equation, Revista Matematica Iberoamericana 19, 161-177 (2003) | MR 1993418 | Zbl 1036.35142

[9] P. Germain, Solutions fortes, solutions faibles d’équations aux dérivées partielles d’évolution, Thèse de l’Ecole polytechnique (2005)

[10] J. Ginibre, G. Velo, Generalized Strichartz inequalities for the wave equation, Journal of Functional Analysis 133, 50-68 (1995) | MR 1351643 | Zbl 0849.35064

[11] J. Ginibre, G. Velo, The global Cauchy problem for the non linear Klein-Gordon equation, Mathematische Zeitschrift 189, 487-505 (1985) | MR 786279 | Zbl 0549.35108

[12] M. Grillakis, Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity, Annals of Mathematics 132, 485-509 (1990) | MR 1078267 | Zbl 0736.35067

[13] K. Jörgens, Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen, Mathematische Zeitschrift 77, 295-308 (1961) | MR 130462 | Zbl 0111.09105

[14] O. Kavian, F. Weissler, Finite energy self-similar solutions of a non-linear wave equation, Communications in Partial Differential Equations 15, 1381-1420 (1990) | MR 1077471 | Zbl 0726.35085

[15] M. Keel, T. Tao, Endpoint Strichartz estimates, American Journal of Mathematics 120, 955-980 (1998) | MR 1646048 | Zbl 0922.35028

[16] C. Kenig, G. Ponce, L. Vega, Global well-posedness for semi-linear wave equations, Communications in Partial Differential Equations 25, 1741-1752 (2000) | MR 1778778 | Zbl 0961.35092

[17] G. Lebeau, Perte de régularité pour les équations d’ondes sur-critiques, Bulletin de la Société Mathématique de France 133 145-157 (2005) | Numdam | Zbl 1071.35020

[18] H. Lindblad, C. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, Journal of Functional Analysis 130, 357-426 (1995) | MR 1335386 | Zbl 0846.35085

[19] N. Masmoudi, F. Planchon, On uniqueness for the critical wave equation, to appear in Communications in Partial Differential Equations | MR 2254606 | Zbl 1106.35035

[20] K. Nakanishi, Scattering theory for the non linear Klein-Gordon equation with Sobolev critical Power, International Mathematics Research Notices 1999, 31-60 | MR 1666973 | Zbl 0933.35166

[21] H. Pecher, Self-similar and asymptotically self-similar solutions of non-linear wave equations, Mathematische Annalen 316, 259-281 (2000) | MR 1741271 | Zbl 0960.35067

[22] F. Planchon, Self-similar solutions and semi-linear wave equations in Besov spaces, Journal de Mathématiques Pures et Appliquées IX, Sér. 79, 809-820 (2000) | MR 1782103 | Zbl 0979.35106

[23] F. Planchon, On uniqueness for semilinear wave equations, Mathematische Zeitschrift 244, 587-599 (2003) | MR 1992026 | Zbl 1023.35079

[24] J. Rauch, I. The u 5 Klein-Gordon equation II. Anomalous singularities for semilinear wave equations, Non-linear partial differential equations and their applications, H. Brézis and J.L. Lions eds, Research notes in Mathematics 53, 335-364, Pitman (1981) | MR 631403 | Zbl 0473.35055

[25] F. Ribaud, A. Youssfi, Solutions globales et solutions auto-similaires de l’équation des ondes non-linéaire, Comptes-rendus de l’Académie des Sciences de Paris 329, Série 1, 33-36 (1999) | Zbl 0933.35140

[26] F. Ribaud, A. Youssfi, Global solutions and self-similar solutions of semilinear wave equation, Mathematische Zeitschrift 239, 231-262 (2002) | MR 1888223 | Zbl 1005.35068

[27] I.E. Segal, The global Cauchy problem for a relativistic vector field with power interaction, Bulletin de la Société Mathématique de France 91, 129-135 (1963) | Numdam | MR 153967 | Zbl 0178.45403

[28] T. Runst, W. Sickel, Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, de Gruyter Series in Nonlinear Analysis and Applications 3 Walter de Gruyter & Co., Berlin (1996) | MR 1419319 | Zbl 0873.35001

[29] J. Shatah, M. Struwe, Regularity results for nonlinear wave equations, Annals of Mathematics 138, 503-518 (1993) | MR 1247991 | Zbl 0836.35096

[30] J. Shatah, M. Struwe, Well-posedeness in the energy space for semilinear wave equations with critical growth, International Mathematics Research Notices 1994, 303-309 | MR 1283026 | Zbl 0830.35086

[31] J. Shatah, M. Struwe, Geometric wave equations, Courant Lecture Notes in Mathematics, Courant Institute of Mathematical Sciences, New-York (2000) | Zbl 0993.35001

[32] C. Sogge, Lectures on nonlinear wave equations, Monographs in Analysis, International Press Incorporated, Boston (1995) | MR 1715192 | Zbl 1089.35500

[33] W. Strauss, Non linear wave equations, CBMS Regional Conference Series in Mathematics 73 (1989) | Zbl 0714.35003

[34] R. Strichartz, A priori estimates for the wave equation and some applications, Journal of Functional Analysis 5, 218-235 (1970) | MR 257581 | Zbl 0189.40701

[35] M. Struwe, Globally regular solutions to the u 5 Klein-Gordon equation, Annali della Scuola Normale Superiore di Pisa : classe di scienze IV Ser. 15, 495-513 (1988) | Numdam | MR 1015805 | Zbl 0728.35072

[36] M. Struwe, Uniqueness for critical non-linear wave equations, Communications in Pure and Applied Mathematics LII, 1179-1188 (1999) | MR 1692140 | Zbl 0933.35141

[37] T. Tao, Low regularity semi-linear wave equations, Communications in Partial Differential Equations 24, 599-629 (1999) | MR 1683051 | Zbl 0939.35123