KAM Tori and Quantum Birkhoff Normal Forms
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1999-2000), Talk no. 19, 13 p.

This talk is concerned with the Kolmogorov-Arnold-Moser (KAM) theorem in Gevrey classes for analytic hamiltonians, the effective stability around the corresponding KAM tori, and the semi-classical asymptotics for Schrödinger operators with exponentially small error terms. Given a real analytic Hamiltonian H close to a completely integrable one and a suitable Cantor set Θ defined by a Diophantine condition, we find a family Λ ω ,ωΘ, of KAM invariant tori of H with frequencies ωΘ which is Gevrey smooth with respect to ω in a Whitney sense. Moreover, we obtain a symplectic Gevrey normal form of the Hamiltonian in a neighborhood of the union Λ of the KAM tori which can be viewed as a Birkhoff normal form (BNF) of H around Λ. This leads to effective stability of the quasiperiodic motion near Λ. We investigate the semi-classical asymptotics of a Schrödinger type operator with a principal symbol H. We obtain semiclassical quasimodes with exponentially small error terms which are associated with the Gevrey family of KAM tori Λ ω ,ωΘ. To do this we construct a quantum Birkhoff normal form (QBNF) of the Schrödinger operator around Λ in suitable Gevrey classes starting from the BNF of H. As an application, we obtain a sharp lower bound for the counting function of the resonances which are exponentially close to a suitable compact subinterval of the real axis.

Popov, Georgi 1

1 Département de Mathématiques, UMR 6629, Université de Nantes - CNRS, B.P. 92208, 44322 Nantes-Cedex 03, France
@article{SEDP_1999-2000____A19_0,
     author = {Popov, Georgi},
     title = {KAM {Tori} and {Quantum} {Birkhoff} {Normal} {Forms}},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:19},
     pages = {1--13},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {1999-2000},
     zbl = {1056.37078},
     mrnumber = {1813182},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_1999-2000____A19_0/}
}
TY  - JOUR
AU  - Popov, Georgi
TI  - KAM Tori and Quantum Birkhoff Normal Forms
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:19
PY  - 1999-2000
SP  - 1
EP  - 13
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/item/SEDP_1999-2000____A19_0/
LA  - en
ID  - SEDP_1999-2000____A19_0
ER  - 
%0 Journal Article
%A Popov, Georgi
%T KAM Tori and Quantum Birkhoff Normal Forms
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:19
%D 1999-2000
%P 1-13
%I Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://www.numdam.org/item/SEDP_1999-2000____A19_0/
%G en
%F SEDP_1999-2000____A19_0
Popov, Georgi. KAM Tori and Quantum Birkhoff Normal Forms. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1999-2000), Talk no. 19, 13 p. http://www.numdam.org/item/SEDP_1999-2000____A19_0/

[1] N. Burq, Absence de résonance près du réel pour l’opérateur de Schrödinger, Seminair de l’Equations aux Dérivées Partielles, n o 17, Ecole Polytechnique, 1997/1998 | EuDML | Numdam | Zbl

[2] F. Cardoso, G. Popov, Quasimodes with exponentially small errors associated with broken elliptic rays, in preparation | Zbl

[3] Y. Colin de Verdière, Quasimodes sur les variétés Riemanniennes, Inventiones Math., Vol. 43, 1977, pp. 15-52 | EuDML | MR | Zbl

[4] V. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions, Springer-Verlag, Berlin, 1993. | MR | Zbl

[5] P. Lochak, Canonical perturbation theory:an approach based on joint approximations, Uspekhi Mat. Nauk, Vol. 47, 6, 1992, pp. 59-140 (in Russian); translation in: Russian Math. Surveys, Vol. 47, 6, 1992, pp. 57-133. | MR | Zbl

[6] G. Popov, Invariant tori effective stability and quasimodes with exponentially small error term I - Birkhoff normal forms, Ann. Henri Poincaré, 2000, to appear. | MR | Zbl

[7] G. Popov, Invariant tori effective stability and quasimodes with exponentially small error term II - Quantum Birkhoff normal forms, Ann. Henri Poincaré, 2000, to appear. | MR | Zbl

[8] J. Pöschel, Lecture on the classical KAM Theorem, School on dynamical systems, May 1992, International center for science and high technology, Trieste, Italy

[9] J. Pöschel, Nekhoroshev estimates for quasi-convex Hamiltonian systems, Math. Z., Vol. 213, 1993, pp. 187-217. | EuDML | MR | Zbl

[10] J. Sjöstrand, A trace formula and review of some estimates for resonances. In: L. Rodino (eds.) Microlocal analysis and spectral theory. Nato ASI Series C: Mathematical and Physical Sciences, 490, pp. 377-437: Kluwer Academic Publishers 1997 | MR | Zbl

[11] J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering poles, Journal of AMS, Vol. 4(4), 1991, pp. 729-769. | MR | Zbl

[12] Stefanov P.: Quasimodes and resonances: Sharp lower bounds, Duke Math. J., 99, 1, 1999, pp. 75-92. | MR | Zbl

[13] S.-H. Tang and M. Zworski, >From quasimodes to resonances, Math. Res. Lett., 5, 1998, pp. 261-272. | MR | Zbl