Stabilité L 1 d’ondes progressives de lois de conservation scalaires
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1998-1999), Exposé no. 8, 11 p.

A powerfull method has been developped in [2] for the study of L 1 -stability of travelling waves in conservation laws or more generally in equations which display L 1 -contractivity, maximum principle and mass conservation. We recall shortly the general procedure. We also show that it partly applies to the waves of a model of radiating gas. These waves have first been studied by Kawashima and Nishibata [5,6] in a different framework. Therefore, shock fronts for this model are stable under mild perturbations.

@article{SEDP_1998-1999____A8_0,
     author = {Serre, Denis},
     title = {Stabilit\'e $L^1$ d'ondes progressives de lois de conservation scalaires},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:8},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {1998-1999},
     zbl = {1063.35520},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_1998-1999____A8_0/}
}
Serre, Denis. Stabilité $L^1$ d’ondes progressives de lois de conservation scalaires. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1998-1999), Exposé no. 8, 11 p. http://www.numdam.org/item/SEDP_1998-1999____A8_0/

[1] C. Abourjaily, P. Bénilan. Symmetrization of quasi-linear parabolic problems. Preprint (1996), Besançon. | MR 1682189 | Zbl 1044.35512

[2] H. Freistühler, D. Serre. L 1 -stability of shock waves in scalar viscous conservation laws. Comm. Pure & Appl. Math, 51 (1998), pp 291-301. | MR 1488516 | Zbl 0907.76046

[3] H. Freistühler, D. Serre. The L 1 -stability of boundary layers for scalar viscous conservation laws. Preprint (1998). | MR 1488516 | Zbl 0993.35063

[4] K. Ito. BV-solutions of the hyperbolic-elliptic system for a radiating gas. A paraî tre.

[5] S. Kawashima, S. Nishibata. Shock waves for a model system of a radiatin gas. SIAM J. Math. Anal., 30 (1999), pp 95-117. | MR 1646685 | Zbl 0924.35082

[6] S. Kawashima, S. Nishibata. Weak solutions with a shock to a model system of the radiating gas. Sci. Bull. Josai Univ. (1998), Special issue no. 5, pp 119-130. | MR 1622388 | Zbl 0915.76074

[7] C. Mascia, R. Natalini. L 1 nonlinear stability of travelling waves for a hyperbolic system with relaxation. J. Diff. Equations, 132 (1996), pp 275-292. | MR 1422120 | Zbl 0879.35099

[8] D. Serre. L 1 -decay and the stability of shock profiles. Proceedings, Prague 1998. A paraî tre. | Zbl 0938.35098

[9] D. Serre. Stabilité des ondes de choc de viscosité qui peuvent être caractéristiques. Prepublication (1994).

[10] D. Serre. Systèmes de lois de conservation, I. Diderot arts & Sci. (1996). Paris. | MR 1459988