Estimations uniformes à l’explosion pour les équations de la chaleur non linéaires et applications
Séminaire Équations aux dérivées partielles (Polytechnique) (1996-1997), Talk no. 19, 8 p.
@article{SEDP_1996-1997____A19_0,
     author = {Merle, Frank and Zaag, Hatem},
     title = {Estimations uniformes \`a l'explosion pour les \'equations de la chaleur non lin\'eaires et applications},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {1996-1997},
     note = {talk:19},
     mrnumber = {1482825},
     zbl = {1069.35505},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_1996-1997____A19_0}
}
Merle, Frank; Zaag, Hatem. Estimations uniformes à l’explosion pour les équations de la chaleur non linéaires et applications. Séminaire Équations aux dérivées partielles (Polytechnique) (1996-1997), Talk no. 19, 8 p. http://www.numdam.org/item/SEDP_1996-1997____A19_0/

[1] Ball, J., Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford 28, 1977, pp. 473-486. | MR 473484 | Zbl 0377.35037

[2] Bricmont, J., Kupiainen, A., et Lin, G., Renormalization group and asymptotics of solutions of nonlinear parabolic equations, Comm. Pure Appl. Math. 47, 1994, pp. 893-922. | MR 1280993 | Zbl 0806.35067

[3] Bricmont, J., et Kupiainen, A., Universality in blow-up for nonlinear heat equations, Nonlinearity 7, 1994, pp. 539-575. | MR 1267701 | Zbl 0857.35018

[4] Chen, X., Y., et Matano, H., Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations, J. Diff. Eqns. 78, 1989, pp. 160-190. | MR 986159 | Zbl 0692.35013

[5] Filippas, S., et Kohn, R., Refined asymptotics for the blowup of u t -Δu=u p , Comm. Pure Appl. Math. 45, 1992, pp. 821-869. | MR 1164066 | Zbl 0784.35010

[6] Galaktionov, V., A., et Vazquez, J., L., Geometrical properties of the solutions of one-dimensional nonlinear parabolic equations, Math. Ann. 303, 1995, pp. 741-769. | MR 1359958 | Zbl 0842.35006

[7] Giga, Y., et Kohn, R., Nondegeneracy of blow-up for semilinear heat equations, Comm. Pure Appl. Math. 42, 1989, pp. 845-884. | MR 1003437 | Zbl 0703.35020

[8] Giga, Y., et Kohn, R., Characterizing blowup using similarity variables, Indiana Univ. Math. J. 36, 1987, pp. 1-40. | MR 876989 | Zbl 0601.35052

[9] Giga, Y., et Kohn, R., Asymptotically self-similar blowup of semilinear heat equations, Comm. Pure Appl. Math. 38, 1985, pp. 297-319. | MR 784476 | Zbl 0585.35051

[10] Herrero, M.A, et Velazquez, J.J.L., Blow-up behavior of one-dimensional semilinear parabolic equations, Ann. Inst. Henri Poin- caré 10, 1993, pp. 131-189. | Numdam | MR 1220032 | Zbl 0813.35007

[11] Herrero, M.A, et Velazquez, J.J.L., Flat blow-up in one-dimensional semilinear heat equations, Differential and Integral eqns. 5, 1992, pp. 973-997. | MR 1171974 | Zbl 0767.35036

[12] Merle, F., et Zaag, H., Refined uniform estimates at blow-up and applications for nonlinear heat equations, en préparation. | Zbl 0926.35024

[13] Merle, F.,et Zaag, H., Optimal estimates for blow-up rate and behavior for nonlinear heat equations, prépublication. | Zbl 0899.35044

[14] Merle, F., et Zaag, H., Stability of blow-up profile for equation of the type u t =Δu+|u| p-1 u, Duke Math. J. 86, 1997, pp. 143-195. | MR 1427848 | Zbl 0872.35049

[15] Zaag, H., Blow-up results for vector valued nonlinear heat equations with no gradient structure, Ann. Inst. Henri Poincaré, à paraî tre. | Numdam | MR 1643389 | Zbl 0902.35050