Poisson formulæ for resonances.
Séminaire Équations aux dérivées partielles (Polytechnique), (1996-1997), Talk no. 13, 12 p.
@article{SEDP_1996-1997____A13_0,
     author = {Zworski, Maciej},
     title = {Poisson formul\ae\ for resonances.},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {1996-1997},
     note = {talk:13},
     mrnumber = {1482819},
     zbl = {02124115},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_1996-1997____A13_0}
}
Zworski, Maciej. Poisson formulæ for resonances.. Séminaire Équations aux dérivées partielles (Polytechnique),  (1996-1997), Talk no. 13, 12 p. http://www.numdam.org/item/SEDP_1996-1997____A13_0/

[1] Sh. Agmon. A perturbation theory for resonances, Journées “Équations aux Dérivées partielles”, Saint-Jean de Monts, 1996. | Numdam | Zbl 0902.47007

[2] R. Bañuelos and A. Sá Barreto. On the heat trace of Schrödinger operators, Comm. Partial Differ. Equations 20 (1995), 2153-2164. | MR 1361734 | Zbl 0843.35016

[3] C. Bardos, J.-C. Guillot and J.V. Ralston. La relation de Poisson pour l’équation des ondes dans un ouvert non borné, Commun. Partial Differ. Equations 7 (1982), 905–958. | Zbl 0496.35067

[4] V. Buslaev. Scattering plane waves, spectral asymptotics and trace formulas in exterior problems, Dokl. Akad. Nauk SSSR, 197 (1971), 999–1002. | MR 278108 | Zbl 0224.47023

[5] I. C. Gohberg and M. G. Krein. Introduction to the theory of linear nonselfadjoint operators, Translations of mathematical monographs 18, American Mathematical Society, Providence, 1969. | MR 246142 | Zbl 0181.13504

[6] L. Guillopé. Asymptotique de la phase de diffusion pour l’opérateur de Schrödinger avec potentiel, C.R. Acad. Sci., Paris, Ser.I 293(1981), 601-603. | Zbl 0487.35073

[7] L. Guillopé and M. Zworski. Upper bounds on the number of resonances for non-compact Riemann surfaces, J. Funct. Anal. 129 (1995), 364–389. | MR 1327183 | Zbl 0841.58063

[8] L. Guillopé and M. Zworski. Scattering asymptotics for Riemann surfaces, to appear in Ann. of Math. | MR 1454705 | Zbl 0898.58054

[9] L. Hörmander. The analysis of linear partial differential operators II, Springer Verlag, Berlin, 1983. | MR 705278 | Zbl 1062.35004

[10] F. Klopp and M. Zworski. Generic simplicity of resonances, Helv.Phys. Acta. 68(1995), 531–538. | MR 1395259 | Zbl 0844.47040

[11] P. Lax and R. Phillips. Decaying modes for the wave equation in the exterior of an obstacle. Comm. Pure App. Math. 22 (1969), 737–787. | MR 254432 | Zbl 0181.38201

[12] P. Lax and R. Phillips. The time delay operator and a related trace formula. in Topics in Functional Analysis. Advances in Math. Suppl. Studies 3 (1978), 197–295. | MR 538021 | Zbl 0463.47006

[13] R.B. Melrose. Scattering theory and the trace of the wave group, J. Func. Anal. 45 (1982), 429–440. | MR 645644 | Zbl 0525.47007

[14] R.B. Melrose. Polynomial bounds on the number of scattering poles, J. Funct. Anal. 53 (1983), 287–303. | MR 724031 | Zbl 0535.35067

[15] R.B. Melrose. Polynomial bounds on the distribution of poles in scattering by an obstacle, Journées “Équations aux Dérivées partielles”, Saint-Jean de Monts, 1984. | Numdam | Zbl 0621.35073

[16] R.B. Melrose. Weyl asymptotics for the phase in obstacle scattering, Commun. Partial Diff. Equations 13(1988), 1431-1439. | MR 956828 | Zbl 0686.35089

[17] R.B. Melrose. Geometric scattering theory, Cambridge University Press, Cambridge, New York, Melbourne, 1995. | MR 1350074 | Zbl 0849.58071

[18] R.B. Melrose and M. Zworski. Scattering metrics and geodesic flow at infinity, Invent. Math. 124(1996), 389–436. | MR 1369423 | Zbl 0855.58058

[19] G. Perla-Menzala and T. Schonbek. Scattering frequencies for the wave equation with potential term, J. Funct. Anal. 55(1984), 297-322. | MR 734801 | Zbl 0536.35060

[20] W. Müller. Spectral geometry and scattering theory for certain complete surfaces of finite volume, Invent. Math. 109 (1992), 265–305. | MR 1172692 | Zbl 0772.58063

[21] A. Sá Barreto and Siu-Hung Tang. Existence of resonances in metric scattering, in preparation. | Zbl 0912.35117

[22] A. Sá Barreto and M. Zworski. Existence of resonances in three dimensions, Comm. Math. Phys. 173(2) (1995), 401–415. | MR 1355631 | Zbl 0835.35099

[23] A. Sá Barreto and M. Zworski. Existence of resonances in potential scattering, Comm. Pure Appl. Math. 49(1996), 1271-1280. | MR 1414586 | Zbl 0877.35087

[24] J. Sjöstrand. A trace formula and review of some estimates for resonances, Publications du Centre de Mathématiques de l’École Polytechnique No.1153, Octobre, 1996.

[25] J. Sjöstrand. A trace formula for resonances and application to semi-classical Schrödinger operators, Séminaire EDP, École Polytechnique, Novembre, 1996. | Numdam | MR 1482808 | Zbl 1061.35506

[26] J. Sjöstrand and M. Zworski. Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4 (1991), 729–769. | MR 1115789 | Zbl 0752.35046

[27] J. Sjöstrand and M. Zworski. Lower bounds on the number of scattering poles II, J. Funct. Anal. 123 (1994), 336–367. | MR 1283032 | Zbl 0823.35137

[28] E. C. Titchmarsh, The theory of functions, Oxford University Press, 1939

[29] G. Vodev. Sharp polynomial bounds on the number of scattering poles for perturbations of the Laplacian, Comm. Math. Phys. 146 (1992), 39–49. | MR 1163673 | Zbl 0766.35032

[30] G. Vodev. Asymptotics of scattering poles for degenerate perturbations of the Laplacian, J. Funct. Anal. 138 (1996), 295-310. | MR 1395960 | Zbl 0862.35082

[31] M. Zworski. Sharp polynomial bounds on the number of scattering poles, Duke Math. J. 59 (1989), 311–323. | MR 1016891 | Zbl 0705.35099

[32] M. Zworski. A remark on isopolar potentials, unpublished note. | MR 1856251

[33] M. Zworski. Counting scattering poles., Proceedings of the Taniguchi International Workshop Spectral and scattering theory, M. Ikawa Ed., Marcel Dekker, New York, Basel, Hong Kong, 1994. | MR 1291635 | Zbl 0823.35139