The inverse N-body problem. A geometrical approach
Séminaire Équations aux dérivées partielles (Polytechnique) (1994-1995), Talk no. 19, 7 p.
@article{SEDP_1994-1995____A19_0,
     author = {Weder, Ricardo A.},
     title = {The inverse $N$-body problem. A geometrical approach},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
     year = {1994-1995},
     note = {talk:19},
     mrnumber = {1362567},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_1994-1995____A19_0}
}
Weder, R. The inverse $N$-body problem. A geometrical approach. Séminaire Équations aux dérivées partielles (Polytechnique) (1994-1995), Talk no. 19, 7 p. http://www.numdam.org/item/SEDP_1994-1995____A19_0/

[1] V. Enss and R. Weder, "Inverse potential scattering: a geometrical approach". Included in "Mathematical Quantum Theory II: Schrödinger Operators", Proceedings of the Summer School in Mathematical Quantum Theory, August 1993, Vancouver, B. C., J. Feldman, R. Froese, and L. Rosen, editors, CRM Proceedings and Lecture Notes 8, AMS Providence (1995). | MR 1332039 | Zbl 0838.35092

[2] V. Enss and R. Weder, "Uniqueness and Reconstruction Formulae for inverse N-particle scattering ", To appear in: "Differential Equations and Mathematical Physics ", Proceedings of the International Conference, Univ. of Alabama at Birmingham, March 1994, I. Knowles editor, International Press Boston (ca. 1995). | MR 1703572 | Zbl 0929.35121

[3] V. Enss and R. Weder, "The geometrical approach to multidimensional inverse scattering", preprint (1995), to appear in J. Math. Phys.. | MR 1341964 | Zbl 0849.35094

[4] R. Weder, "Multidimensional inverse scattering in an electric field". Preprint IIMAS-UNAM (1995). | MR 1402772 | Zbl 0868.47011

[5] L. Hörmander, "The existence of wave operators in scattering theory", Math. Z. 146, 69- 91 (1976). | MR 393884 | Zbl 0319.35059