Bounds on Schrödinger operators and generalized Sobolev type inequalities
Séminaire Équations aux dérivées partielles (Polytechnique), (1985-1986), Talk no. 23, 8 p.
@article{SEDP_1985-1986____A23_0,
     author = {Lieb, Elliott H.},
     title = {Bounds on Schr\"odinger operators and generalized Sobolev type inequalities},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
     year = {1985-1986},
     note = {talk:23},
     zbl = {0621.35030},
     mrnumber = {874582},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_1985-1986____A23_0}
}
Lieb, Elliot H. Bounds on Schrödinger operators and generalized Sobolev type inequalities. Séminaire Équations aux dérivées partielles (Polytechnique),  (1985-1986), Talk no. 23, 8 p. http://www.numdam.org/item/SEDP_1985-1986____A23_0/

[1] M. Aizenman and E.H. Lieb, On semiclassical bounds for eigenvalues of Schrödinger operators, Phys. Lett. 66A, 427-429 (1978). | MR 598768

[2] M. Cwikel, Weak type estimates for singular values and the number of bound states of Schrödinger operators, Ann. Math. 106, 93-100 (1977). | MR 473576 | Zbl 0362.47006

[3] I. Daubechies, Commun. Math. Phys. 90, 511 (1983) | MR 719431 | Zbl 0946.81521

[4] E.H. Lieb, The number of bound states of one-body Schrödinger operators and the Weyl problem, A.M.S. Proc. Symp. in Pure Math. 36, 241-251 (1980). The result were announced in Bull. Ann. Math. Soc. 82, 751-753 (1976). | MR 573436 | Zbl 0445.58029

[5] H.E. Lieb, An Lp bound for the Riesz and Bessel potentials of orthonormal functions, J. Funct. Anal. 51, 159-165 (1983). | MR 701053 | Zbl 0517.46025

[6] E.H. Lieb, On characteristic exponents in turbulence, Commun. Math. Phys. 92, 413-480 (1984). | MR 736404 | Zbl 0598.76054

[7] E.H. Lieb and M. Loss, Stability of Coulomb systems with magnetic fields: II. The many-electron atom and the one-electron molecule, Commun. Math. Phys. 104, 271-282 (1986). | MR 836004 | Zbl 0607.35082

[8] E.H. Lieb and W.E. Thirring, Bounds for the kinetic energy of fermions which proves the stability of matter,Phys. Rev. Lett. 35, 687-689 (1975). Errata 35, 1116 (1975).

[9] E.H. Lieb and W.E. Thirring, "Inequalities for the moments of the eigenvalues of the Schrödinger equation and their relation to Sobolev inequalities in studies in Mathematical Physics" (E. Lieb, B. Simon, A. Wightman eds.) Princeton University Press, 1976. | Zbl 0342.35044

[10] E.H. Lieb and W.E. Thirring, Gravitational collapse in quantum mechanics with relativistic kinetic energy, Ann. of Phys. (NY) 155, 494-512 (1984). | MR 753345

[11] G.V. Rosenbljum, Distribution of the discrete spectrum of singular differential operators. Dokl. Aka. Nauk SSSR 202, 1012-1015 (1972). (MR 45 # 4216). The details are given in Izv. Vyss. Ucebn. Zaved. Matem. 164 75-86 (1976). [English trans. Sov. Math. (Iz VUZ) 20, 63-71 (1976).] | MR 295148 | Zbl 0249.35069