@article{RSMUP_1995__93__143_0, author = {Brunner, N.}, title = {A modal logic of consistency}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {143--152}, publisher = {Seminario Matematico of the University of Padua}, volume = {93}, year = {1995}, mrnumber = {1354355}, zbl = {0839.03035}, language = {en}, url = {http://www.numdam.org/item/RSMUP_1995__93__143_0/} }
TY - JOUR AU - Brunner, N. TI - A modal logic of consistency JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1995 SP - 143 EP - 152 VL - 93 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_1995__93__143_0/ LA - en ID - RSMUP_1995__93__143_0 ER -
Brunner, N. A modal logic of consistency. Rendiconti del Seminario Matematico della Università di Padova, Volume 93 (1995), pp. 143-152. http://www.numdam.org/item/RSMUP_1995__93__143_0/
[1] Effective Quantum Observables, e-print 9501018, QUANT-PH@XXX.LANL.GOV.
- - ,[2] Freyd's Models for the Independence of the Axiom of Choice, Memoirs AMS, 79, Providence (1989). | MR | Zbl
- ,[3] Permutation models and topological groups, Rend. Sem. Mat. Univ. Padova, 76 (1986), pp. 149-161. | Numdam | MR | Zbl
- ,[4] Fraenkel-Mostowski method, revisited, Notre Dame J. Formal Logic, 31 (1990), pp. 64-75. | MR | Zbl
[5] Oligomorphic Permutation Groups, LMS Lecture Notes, 152, Cambridge (1990). | MR | Zbl
,[6] Powers of regular cardinals, Ann. Math. Logic, 1 (1970), pp. 139-178. | MR | Zbl
,[7] Permutation models in the sense of Rieger-Bernays, Zeitschrift Math. Logik Grundl. Math., 33 (1987), pp. 201-210. | MR | Zbl
,[8] Abstract Harmonic Analysis, I, Springer Grundlehren, 115, Berlin (1963). | Zbl
- ,[9] The Axiom of Choice, North-Holland Studies in Logic, 75, Amsterdam (1973). | MR | Zbl
,[10] Dimensionally invariant laws correspond to meaningful qualitative relations, Philosophy of Science, 45 (1978), pp. 81-95.
,[11] Extensions of the Lewis system S5, J. Symbolic Logic, 16 (1951), pp. 112-120. | MR | Zbl
,[12] Provability interpretations of modal logic, Israel J. Math., 25 (1976), pp. 287-304. | MR | Zbl
,[13] Non-standard models for set theory, in J. BELL et. al. (ed.): Proceedings of the Bertrand Russell Memorial Logic Conference, Leeds (1973), pp. 278-314. | MR
- ,