Comparison between the generalized mean curvature according to Allard and Federer's mean curvature measure
Rendiconti del Seminario Matematico della Università di Padova, Tome 88 (1992) , pp. 221-227.
@article{RSMUP_1992__88__221_0,
     author = {Ossanna, E.},
     title = {Comparison between the generalized mean curvature according to Allard and Federer's mean curvature measure},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {221--227},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {88},
     year = {1992},
     zbl = {0783.52003},
     mrnumber = {1209126},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_1992__88__221_0/}
}
Ossanna, E. Comparison between the generalized mean curvature according to Allard and Federer's mean curvature measure. Rendiconti del Seminario Matematico della Università di Padova, Tome 88 (1992) , pp. 221-227. http://www.numdam.org/item/RSMUP_1992__88__221_0/

[FU] J.H.G. Fu, private communication (1991).

[HAL] P.R. Halmos, Measure Theory, Springer-Verlag, New York-Berlin (1974). | MR 453532 | Zbl 0283.28001

[HUT] J.E. Hutchinson, Second fundamental form for varifolds and the existence of surfaces minimizing curvature, Indiana Univ. Math. J., 35 (1986), pp. 45-71. | MR 825628 | Zbl 0561.53008

[RES] Yu. G. Reshetnyak, Weak convergence of completely additive vector functions on a set, Sibirsk. Mat. Z., 9 (1968), pp. 1386-1394. | MR 240274 | Zbl 0169.18301

[SCH1] R. Schneider, Curvature measures of convex bodies, Ann. Mat. Pura Appl., (4) 116 (1978), pp. 101-134. | MR 506976 | Zbl 0389.52006

[SCH2] R. Schneider, Bestimmung konvexer Körper durch Krümmungmaße, Comment. Math. Helvetici, 54 (1979), pp. 42-60. | MR 522031 | Zbl 0392.52004

[SIM] L. Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian Nat. Univ. Canberra, Australia, vol. 3 (1984), p. 230. | MR 756417 | Zbl 0546.49019