Wielandt series and defects of subnormal subgroups in finite soluble groups
Rendiconti del Seminario Matematico della Università di Padova, Tome 87 (1992), pp. 93-104.
@article{RSMUP_1992__87__93_0,
     author = {Casolo, Carlo},
     title = {Wielandt series and defects of subnormal subgroups in finite soluble groups},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {93--104},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {87},
     year = {1992},
     zbl = {0794.20027},
     mrnumber = {1183904},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_1992__87__93_0/}
}
TY  - JOUR
AU  - Casolo, Carlo
TI  - Wielandt series and defects of subnormal subgroups in finite soluble groups
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1992
DA  - 1992///
SP  - 93
EP  - 104
VL  - 87
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_1992__87__93_0/
UR  - https://zbmath.org/?q=an%3A0794.20027
UR  - https://www.ams.org/mathscinet-getitem?mr=1183904
LA  - en
ID  - RSMUP_1992__87__93_0
ER  - 
Casolo, Carlo. Wielandt series and defects of subnormal subgroups in finite soluble groups. Rendiconti del Seminario Matematico della Università di Padova, Tome 87 (1992), pp. 93-104. http://www.numdam.org/item/RSMUP_1992__87__93_0/

[1] R.A. Bryce, A note on subnormal defect in finite soluble groups, Bull. Austral. Math. Soc., 39 (1989), pp. 255-258. | MR 998019 | Zbl 0673.20011

[2] R.A. Bryce - J. COSSEY, The Wielandt subgroup of a finite soluble group, J. London Math. Soc. (2), 40 (1989), pp. 244-256. | MR 1044272 | Zbl 0734.20010

[3] R. Carter - T.O. Hawkes, The F-normalizers of a finite soluble . group, J. Algebra, 5 (1967), pp. 175-202. | MR 206089 | Zbl 0167.29201

[4] C. Casolo, Soluble groups with finite Wielandt length, Glasgow Math. J., 31 (1989), pp. 329-334. | MR 1021808 | Zbl 0682.20018

[5] C. Casolo, Gruppi finiti risolubili in cui tutti i sottogruppi subnormali hanno difetto al più 2, Rend. Sem. Mat. Univ. Padova, 71 (1984), pp. 257-271. | Numdam | Zbl 0575.20019

[6] W. Gaschütz, Gruppen in denen das Normalteilersein transitiv ist, J. Reine Angew. Math., 198 (1957), pp. 87-92. | MR 91277 | Zbl 0077.25003

[7] P. Hall, Some sufficient conditions for a group to be nilpotent, Illinois J. Math., 2 (1958), pp. 787-801. | MR 105441 | Zbl 0084.25602

[8] T.O. Hawkes, Groups whose subnormal subgroups have bounded defects, Arch. Math. (Basel), 43 (1984), pp. 289-294. | MR 802300 | Zbl 0547.20017

[9] J.C. Lennox - S.E. Stonehewer, Subnormal Subgroups of Groups, Oxford Math. Monographs, Clarendon Press, Oxford (1987). | MR 902587 | Zbl 0606.20001

[10] D.J.S. Robinson, Groups in which normality is a transitive relation, Proc. Cambridge Phil. Soc., 60 (1964), pp. 21-38. | MR 159885 | Zbl 0123.24901

[11] J.E. Roseblade, On groups in which every subgroup is subnormal, J. Algebra, 2 (1965), pp. 402-412. | MR 193147 | Zbl 0135.04901

[12] E.E. Shult, A note on splitting in solvable groups, Proc. Amer. Math. Soc., 17 (1966), pp. 318-320. | MR 207843 | Zbl 0142.26002

[13] H. Wielandt, Über den Normalisator der subnormalen Untergruppen, Math. Z., 59 (1958), pp. 463-465. | MR 102550 | Zbl 0082.24703