@article{RSMUP_1986__76__247_0, author = {Fuchs, L.}, title = {Arbitrarily large indecomposable divisible torsion modules over certain valuation domains}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {247--254}, publisher = {Seminario Matematico of the University of Padua}, volume = {76}, year = {1986}, zbl = {0611.13010}, mrnumber = {881573}, language = {en}, url = {http://www.numdam.org/item/RSMUP_1986__76__247_0/} }
TY - JOUR AU - Fuchs, L. TI - Arbitrarily large indecomposable divisible torsion modules over certain valuation domains JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1986 DA - 1986/// SP - 247 EP - 254 VL - 76 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_1986__76__247_0/ UR - https://zbmath.org/?q=an%3A0611.13010 UR - https://www.ams.org/mathscinet-getitem?mr=881573 LA - en ID - RSMUP_1986__76__247_0 ER -
Fuchs, L. Arbitrarily large indecomposable divisible torsion modules over certain valuation domains. Rendiconti del Seminario Matematico della Università di Padova, Volume 76 (1986), pp. 247-254. http://www.numdam.org/item/RSMUP_1986__76__247_0/
[C] Fully rigid systems of modules. | Numdam | Zbl
,[FG] The Brenner-Butler-Corner theorem and its application to modules (to appear in Abelian Group Theory, Proceedings Oberwolfach, 1985). | MR | Zbl
- ,[F1] On divisible modules over domains, Abelian Groups and Modules, Proc. of the Udine Conference, Springer-Verlag (Wien - New York, 1985), pp. 341-356. | MR | Zbl
,[F2] On polyserial modules over valuation domains (to appear). | MR | Zbl
,[FS] Modules over valuation domains, Lecture Notes in Pure and Applied Math., vol. 97, Marcel Dekker, 1985. | MR | Zbl
- ,[M] Cotorsion modules, Memoirs of Amer. Math. Soc., 49 (1964). | MR | Zbl
,[S] Infinite abelian groups, Whitehead problem and some constructions, Israel J. Math., 18 (1974), pp. 243-256. | MR | Zbl
,[W] Relative homological algebra and abelian groups, Illinois J. Math., 40 (1966), pp. 186-209. | MR | Zbl
,