Exact adaptive pointwise estimation on Sobolev classes of densities
ESAIM: Probability and Statistics, Tome 5 (2001), pp. 1-31.

The subject of this paper is to estimate adaptively the common probability density of n independent, identically distributed random variables. The estimation is done at a fixed point x 0 , over the density functions that belong to the Sobolev class W n (β,L). We consider the adaptive problem setup, where the regularity parameter β is unknown and varies in a given set B n . A sharp adaptive estimator is obtained, and the explicit asymptotical constant, associated to its rate of convergence is found.

Classification : 62N01,  62N02,  62G20
Mots clés : density estimation, exact asymptotics, pointwise risk, sharp adaptive estimator
@article{PS_2001__5__1_0,
     author = {Butucea, Cristina},
     title = {Exact adaptive pointwise estimation on {Sobolev} classes of densities},
     journal = {ESAIM: Probability and Statistics},
     pages = {1--31},
     publisher = {EDP-Sciences},
     volume = {5},
     year = {2001},
     zbl = {0990.62032},
     mrnumber = {1845320},
     language = {en},
     url = {http://www.numdam.org/item/PS_2001__5__1_0/}
}
TY  - JOUR
AU  - Butucea, Cristina
TI  - Exact adaptive pointwise estimation on Sobolev classes of densities
JO  - ESAIM: Probability and Statistics
PY  - 2001
DA  - 2001///
SP  - 1
EP  - 31
VL  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/PS_2001__5__1_0/
UR  - https://zbmath.org/?q=an%3A0990.62032
UR  - https://www.ams.org/mathscinet-getitem?mr=1845320
LA  - en
ID  - PS_2001__5__1_0
ER  - 
Butucea, Cristina. Exact adaptive pointwise estimation on Sobolev classes of densities. ESAIM: Probability and Statistics, Tome 5 (2001), pp. 1-31. http://www.numdam.org/item/PS_2001__5__1_0/

[1] A. Barron, L. Birge and P. Massart, Risk bounds for model selection via penalization. Probab. Theory Related Fields 113 (1995) 301-413. | MR 1679028 | Zbl 0946.62036

[2] O.V. Besov, V.L. Il'In and S.M. Nikol'Skii, Integral representations of functions and imbedding theorems. J. Wiley, New York (1978).

[3] L. Birge and P. Massart, From model selection to adaptive estimation, Festschrift fur Lucien Le Cam. Springer (1997) 55-87. | MR 1462939 | Zbl 0920.62042

[4] L.D. Brown and M.G. Low, A constrained risk inequality with application to nonparametric functional estimation. Ann. Statist. 24 (1996) 2524-2535. | MR 1425965 | Zbl 0867.62023

[5] C. Butucea, The adaptive rates of convergence in a problem of pointwise density estimation. Statist. Probab. Lett. 47 (2000) 85-90. | MR 1745667 | Zbl 0977.62038

[6] C. Butucea, Numerical results concerning a sharp adaptive density estimator. Comput. Statist. 1 (2001). | MR 1862507 | Zbl 1007.62026

[7] L. Devroye and G. Lugosi, A universally acceptable smoothing factor for kernel density estimates. Ann. Statist. 24 (1996) 2499-2512. | MR 1425963 | Zbl 0867.62024

[8] D.L. Donoho, I. Johnstone, G. Kerkyacharian and D. Picard, Wavelet shrinkage: Asymptopia? J. R. Stat. Soc. Ser. B Stat. Methodol. 57 (1995) 301-369. | MR 1323344 | Zbl 0827.62035

[9] D.L. Donoho, I. Johnstone, G. Kerkyacharian and D. Picard, Density estimation by wavelet thresholding. Ann. Statist. 24 (1996) 508-539. | MR 1394974 | Zbl 0860.62032

[10] D.L. Donoho and M.G. Low, Renormalization exponents and optimal pointwise rates of convergence. Ann. Statist. 20 (1992) 944-970. | MR 1165601 | Zbl 0797.62032

[11] S.Yu. Efromovich, Nonparametric estimation of a density with unknown smoothness. Theory Probab. Appl. 30 (1985) 557-568. | Zbl 0593.62034

[12] S.Yu. Efromovich and M.S. Pinsker, An adaptive algorithm of nonparametric filtering. Automat. Remote Control 11 (1984) 1434-1440. | Zbl 0637.93069

[13] A. Goldenshluger and A. Nemirovski, On spatially adaptive estimation of nonparametric regression. Math. Methods Statist. 6 (1997) 135-170. | MR 1466625 | Zbl 0892.62018

[14] G.K. Golubev, Adaptive asymptotically minimax estimates of smooth signals. Problems Inform. Transmission 23 (1987) 57-67. | MR 893970 | Zbl 0636.94005

[15] G.K. Golubev, Quasilinear estimates for signals in 𝕃 2 . Problems Inform. Transmission 26 (1990) 15-20. | MR 1051584 | Zbl 0723.62026

[16] G.K. Golubev, Nonparametric estimation of smooth probability densities in 𝕃 2 . Problems Inform. Transmission 28 (1992) 44-54. | MR 1163140 | Zbl 0785.62039

[17] G.K. Golubev and M. Nussbaum, Adaptive spline estimates in a nonparametric regression model. Theory Probab. Appl. 37 (1992) 521-529. | MR 1214361 | Zbl 0787.62044

[18] I.A. Ibragimov and R.Z. Hasminskii, Statistical estimation: Asymptotic theory. Springer-Verlag, New York (1981). | MR 620321 | Zbl 0467.62026

[19] A. Juditsky, Wavelet estimators: Adapting to unknown smoothness. Math. Methods Statist. 6 (1997) 1-25. | MR 1456644 | Zbl 0871.62039

[20] G. Kerkyacharian and D. Picard, Density estimation by kernel and wavelet method, optimality in Besov space. Statist. Probab. Lett. 18 (1993) 327-336. | MR 1245704 | Zbl 0793.62019

[21] G. Kerkyacharian, D. Picard and K. Tribouley, 𝕃 p adaptive density estimation. Bernoulli 2 (1996) 229-247. | MR 1416864 | Zbl 0858.62031

[22] J. Klemelä and A.B. Tsybakov, Sharp adaptive estimation of linear functionals, Prépublication 540. LPMA Paris 6 (1999). | Zbl 1043.62029

[23] O.V. Lepskii, On a problem of adaptive estimation in Gaussian white noise. Theory Probab. Appl. 35 (1990) 454-466. | MR 1091202 | Zbl 0725.62075

[24] O.V. Lepskii, Asymptotically minimax adaptive estimation I: Upper bounds. Optimally adaptive estimates. Theory Probab. Appl. 36 (1991) 682-697. | MR 1147167 | Zbl 0776.62039

[25] O.V. Lepskii, On problems of adaptive estimation in white Gaussian noise. Advances in Soviet Math. Amer. Math. Soc. 12 (1992b) 87-106. | MR 1191692 | Zbl 0783.62061

[26] O.V. Lepski and B.Y. Levit, Adaptive minimax estimation of infinitely differentiable functions. Math. Methods Statist. 7 (1998) 123-156. | MR 1643256 | Zbl 1103.62332

[27] O.V. Lepski, E. Mammen and V.G. Spokoiny, Optimal spatial adaptation to inhomogeneous smoothness: An approach based on kernel estimates with variable bandwidth selectors. Ann. Statist. 25 (1997) 929-947. | MR 1447734 | Zbl 0885.62044

[28] O.V. Lepski and V.G. Spokoiny, Optimal pointwise adaptive methods in nonparametric estimation. Ann. Statist. 25 (1997) 2512-2546. | MR 1604408 | Zbl 0894.62041

[29] D. Pollard, Convergence of Stochastic Processes. Springer-Verlag, New York (1984). | MR 762984 | Zbl 0544.60045

[30] A.B. Tsybakov, Pointwise and sup-norm sharp adaptive estimation of functions on the Sobolev classes. Ann. Statist. 26 (1998) 2420-2469. | MR 1700239 | Zbl 0933.62028

[31] S. Van De Geer, A maximal inequality for empirical processes, Technical Report TW 9505. University of Leiden, Leiden (1995).