We construct a certain algebro-geometric version of the free loop space for a complex algebraic variety X. This is an ind-scheme containing the scheme of formal arcs in X as studied by Kontsevich and Denef-Loeser. We describe the chiral de Rham complex of Malikov, Schechtman and Vaintrob in terms of the space of formal distributions on supported in . We also show that possesses a factorization structure: a certain non-linear version of a vertex algebra structure. This explains the heuristic principle that “all” linear constructions applied to the free loop space produce vertex algebras.
@article{PMIHES_2004__100__209_0, author = {Kapranov, Mikhail and Vasserot, Eric}, title = {Vertex algebras and the formal loop space}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {209--269}, publisher = {Springer}, volume = {100}, year = {2004}, doi = {10.1007/s10240-004-0023-9}, mrnumber = {2102701}, zbl = {1106.17038}, language = {en}, url = {http://www.numdam.org/articles/10.1007/s10240-004-0023-9/} }
TY - JOUR AU - Kapranov, Mikhail AU - Vasserot, Eric TI - Vertex algebras and the formal loop space JO - Publications Mathématiques de l'IHÉS PY - 2004 SP - 209 EP - 269 VL - 100 PB - Springer UR - http://www.numdam.org/articles/10.1007/s10240-004-0023-9/ DO - 10.1007/s10240-004-0023-9 LA - en ID - PMIHES_2004__100__209_0 ER -
%0 Journal Article %A Kapranov, Mikhail %A Vasserot, Eric %T Vertex algebras and the formal loop space %J Publications Mathématiques de l'IHÉS %D 2004 %P 209-269 %V 100 %I Springer %U http://www.numdam.org/articles/10.1007/s10240-004-0023-9/ %R 10.1007/s10240-004-0023-9 %G en %F PMIHES_2004__100__209_0
Kapranov, Mikhail; Vasserot, Eric. Vertex algebras and the formal loop space. Publications Mathématiques de l'IHÉS, Volume 100 (2004), pp. 209-269. doi : 10.1007/s10240-004-0023-9. http://www.numdam.org/articles/10.1007/s10240-004-0023-9/
1. Etale Homotopy, Lect. Notes Math. 100, Springer, 1970. | MR | Zbl
, ,2. B. Bakalov, Beilinson-Drinfeld's definition of a chiral algebra, available from http://www.math.berkeley.edu/∼bakalov/.
3. A proof of the Jantzen conjectures, in: S. Gelfand, S. Gindikin (eds.), I. M. Gelfand Seminar 1, 1-50, Adv. Soviet Math. 16, Amer. Math. Soc., Providence, RI, 1993. | Zbl
, I. Bernstein,4. A. Beilinson, V. Drinfeld, Chiral algebras, available from http://zaphod.uchicago.edu/∼benzvi/.
5. A. Beilinson, V. Drinfeld, Quantization of Hitchin's integrable system and Hecke eigensheaves, available from http://zaphod.uchicago.edu/∼benzvi/.
6. Néron models, Springer, 1990. | MR | Zbl
, , ,7. Jacobienne locale, groupe de bivecteurs de Witt universel et symbole modéré, C.R. Acad. Sci. Paris, Sér. I, Math., 318 (1994), 743-746. | MR | Zbl
,8. Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math., 135 (1999), 201-232. | MR | Zbl
, ,9. Eléments de géométrie algébrique, Grund. Math. Wiss. 166, Boston, Basel, Berlin: Springer, 1971. | Zbl
, ,10. A. Grothendieck, Éléments de géométrie algébrique IV (rédigés avec la collaboration de Jean Dieudonné), Publ. Math., Inst. Hautes Étud. Sci., 24 (1965), 5-231, 28 (1966), 5-255, 32 (1967), 5-361.
11. Vertex algebras and algebraic curves, Séminaire Bourbaki, 875 (2000), Astérisque 276 (2002), 299-339. | Numdam | MR | Zbl
,12. Vertex Operator Algebras and the Monster, Pure Appl. Math. 134, Boston: Academic Press, 1988. | MR | Zbl
, , ,13. Notes on 2d conformal field theory and string theory, in: P. Deligne et al. (eds), Quantum fields and strings: a course for mathematicians, vol. 2, pp. 1017-1089, Providence, RI: Am. Math. Soc., 1999. | MR
,14. The actions of infinite-dimensional Lie algebras, Funct. Anal. Appl., 6 (1972), 9-13. | MR | Zbl
, , ,15. Théorie des topos et cohomologie étale des schémas, SGA IV, Exp. I, Lect. Notes Math. 269, Springer, 1970. | MR | Zbl
, ,16. On the -module and the formal variable approachs to vertex algebras, Topics in geometry, pp. 175-202, Birkhäuser, 1996. | MR | Zbl
, ,17. Vertex algebras for beginners, Univ. Lect. Ser. 10, Providence, RI: Am. Math. Soc., 1997. | MR | Zbl
,18. Double affine Hecke algebras and 2-dimensional local fields, J. Am. Math. Soc., 14 (2001), 239-262. | MR | Zbl
,19. Existence theorem for higher local fields, Invitation to higher local fields (Münster, 1999), pp. 165-195 (electronic), Geom. Topol. Monogr. 3, Geom. Topol. Publ., Coventry, 2000. | MR | Zbl
,20. Kazhdan-Lusztig Conjecture for Symmetrizable Kac-Moody Lie Algebra. II Intersection Cohomologies of Schubert varieties, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989), pp. 159-195, Progr. Math., 92, Birkhäuser, 1990. | MR | Zbl
, ,21. Introduction to the theory of supermanifolds. Uspekhi Mat. Nauk., 35 (1980), 3-57. | MR | Zbl
,22. A. Malikov, V. Schechtman, A. Vaintrob, Chiral De Rham complex, Comm. Math. Phys., 204 (1999), 439-473. | MR | Zbl
23. Higher-dimensional local fields and L-functions, Invitation to higher local fields (Münster, 1999), pp. 199-213 (electronic), Geom. Topol. Monogr. 3, Geom. Topol. Publ., Coventry, 2000. | MR | Zbl
,24. Higher algebraic K-theory of schemes and of derived categories, in: P. Cartier et al. (eds.), Grothendieck Festschrift, vol. III, Progr. Math., 88, pp. 247-435, Birkhäuser, 1990. | MR | Zbl
, ,Cited by Sources: