Let N be a complete hyperbolic 3-manifold that is an algebraic limit of geometrically finite hyperbolic 3-manifolds. We show N is homeomorphic to the interior of a compact 3-manifold, or tame, if one of the following conditions holds: 1. N has non-empty conformal boundary, 2. N is not homotopy equivalent to a compression body, or 3. N is a strong limit of geometrically finite manifolds. The first case proves Ahlfors’ measure conjecture for kleinian groups in the closure of the geometrically finite locus: given any algebraic limit of geometrically finite kleinian groups, the limit set of is either of Lebesgue measure zero or all of . Thus, Ahlfors’ conjecture is reduced to the density conjecture of Bers, Sullivan, and Thurston.
@article{PMIHES_2003__98__145_0,
author = {Brock, Jeffrey and Bromberg, Kenneth and Evans, Richard and Souto, Juan},
title = {Tameness on the boundary and {Ahlfors'} measure conjecture},
journal = {Publications Math\'ematiques de l'IH\'ES},
pages = {145--166},
year = {2003},
publisher = {Springer},
volume = {98},
doi = {10.1007/s10240-003-0018-y},
zbl = {1060.30054},
language = {en},
url = {https://www.numdam.org/articles/10.1007/s10240-003-0018-y/}
}
TY - JOUR AU - Brock, Jeffrey AU - Bromberg, Kenneth AU - Evans, Richard AU - Souto, Juan TI - Tameness on the boundary and Ahlfors' measure conjecture JO - Publications Mathématiques de l'IHÉS PY - 2003 SP - 145 EP - 166 VL - 98 PB - Springer UR - https://www.numdam.org/articles/10.1007/s10240-003-0018-y/ DO - 10.1007/s10240-003-0018-y LA - en ID - PMIHES_2003__98__145_0 ER -
%0 Journal Article %A Brock, Jeffrey %A Bromberg, Kenneth %A Evans, Richard %A Souto, Juan %T Tameness on the boundary and Ahlfors' measure conjecture %J Publications Mathématiques de l'IHÉS %D 2003 %P 145-166 %V 98 %I Springer %U https://www.numdam.org/articles/10.1007/s10240-003-0018-y/ %R 10.1007/s10240-003-0018-y %G en %F PMIHES_2003__98__145_0
Brock, Jeffrey; Bromberg, Kenneth; Evans, Richard; Souto, Juan. Tameness on the boundary and Ahlfors' measure conjecture. Publications Mathématiques de l'IHÉS, Tome 98 (2003), pp. 145-166. doi: 10.1007/s10240-003-0018-y
1. , Degenerating families of Riemann surfaces, Ann. Math., 105 (1977), 29-44. | Zbl | MR
2. , Finitely generated Kleinian groups, Am. J. Math., 86 (1964), 413-429. | Zbl | MR
3. , Fundamental polyhedrons and limit point sets of Kleinian groups, Proc. Natl. Acad. Sci. USA, 55 (1966), 251-254. | Zbl | MR
4. and , Cores of hyperbolic 3-manifolds and limits of Kleinian groups, Am. J. Math., 118 (1996), 745-779. | Zbl | MR
5. and , Cores of hyperbolic 3-manifolds and limits of Kleinian groups II, J. Lond. Math. Soc., 61 (2000), 489-505. | Zbl | MR
6. and , Lectures on Hyperbolic Geometry, Springer-Verlag, 1992. | Zbl | MR
7. , Cobordism of automorphisms of surfaces, Ann. Sci. Éc. Norm. Supér., 16 (1983), 237-270. | Zbl | MR | Numdam
8. , Bouts des variétés hyperboliques de dimension 3, Ann. Math., 124 (1986), 71-158. | Zbl | MR
9. and , Variétés hyperboliques à géodésiques arbitrairement courtes, Bull. Lond. Math. Soc., 20 (1988), 255-261. | Zbl | MR
10. , Iteration of mapping classes and limits of hyperbolic 3-manifolds, Invent. Math., 143 (2001), 523-570. | Zbl | MR
11. and , Cone Manifolds and the Density Conjecture, To appear in the proceedings of the Warwick conference ‘Kleinian groups and hyperbolic 3-manifolds,' arXiv:mathGT/0210484 (2002). | Zbl
12. and , On the density of geometrically finite Kleinian groups, Accepted to Acta Math., arXiv:mathGT/0212189 (2002). | Zbl | MR
13. K. Bromberg, Hyperbolic Dehn surgery on geometrically infinite 3-manifolds, Preprint (2000).
14. , Rigidity of geometrically finite hyperbolic cone-manifolds, To appear, Geom. Dedicata, arXiv:mathGT/0009149 (2000). | Zbl | MR
15. , Hyperbolic cone manifolds, short geodesics, and Schwarzian derivatives, Preprint, arXiv:mathGT/0211401 (2002). | Zbl | MR
16. , Projective structures with degenerate holonomy and the Bers density conjecture, Preprint, arXiv:mathGT/0211402 (2002). | MR
17. and , Collars for Kleinian Groups, Duke Math. J., 49 (1982), 163-182. | Zbl | MR
18. , Ends of hyperbolic 3-manifolds, J. Am. Math. Soc., 6 (1993), 1-35. | Zbl | MR
19. , Geometrically tame hyperbolic 3-manifolds, In Differential geometry: Riemannian geometry (Los Angeles, CA, 1990), volume 54 of Proc. Symp. Pure Math., pp. 99-109. Am. Math. Soc., 1993. | Zbl | MR
20. , and , Notes on notes of Thurston. In Analytical and Geometric Aspects of Hyperbolic Space, pp. 3-92. Cambridge University Press, 1987. | Zbl | MR
21. and , On limits of tame hyperbolic 3-manifolds, J. Differ. Geom., 43 (1996), 1-41. | Zbl | MR
22. and , Geometric complex coordinates for Teichmüller space, In preparation.
23. R. Evans, Deformation spaces of hyperbolic 3-manifolds: strong convergence and tameness, Ph.D. Thesis, Unversity of Michigan (2000).
24. . Tameness persists in weakly type-preserving strong limits, Preprint. | Zbl | MR
25. and , Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differ. Geom., 48 (1998), 1-59. | Zbl | MR
26. and , Universal bounds for hyperbolic Dehn surgery, Preprint, arXiv:math.GT/0204345 (2002). | Zbl | MR
27. C. Hodgson and S. Kerckhoff, The shape of hyperbolic Dehn surgery space, In preparation (2002).
28. and , Non-continuity of the action of the modular group at Bers' boundary of Teichmüller space, Invent. Math., 100 (1990), 25-48. | Zbl
29. and , On Ahlfors' finiteness theorem, Adv. Math., 76 (1989), 155-169. | Zbl
30. , The geometry of finitely generated kleinian groups, Ann. Math., 99 (1974), 383-462. | Zbl | MR
31. A. Marden, Geometrically finite Kleinian groups and their deformation spaces, In Discrete groups and automorphic functions, Academic Press (1977), pp. 259-293. Academic Press, 1977. | MR
32. , On boundaries of Teichmüller spaces and on kleinian groups: II, Ann. Math., 91 (1970), 607-639. | Zbl | MR
33. , Kleinian Groups, Springer-Verlag, 1988. | Zbl | MR
34. , Compact submanifolds of 3-manifolds with boundary, Quart. J. Math. Oxf., 37 (1986), 299-307. | Zbl | MR
35. , The classification of conformal dynamical systems, In Current Developments in Mathematics, 1995, pp. 323-360. International Press, 1995. | Zbl | MR
36. , Renormalization and 3-Manifolds Which Fiber Over the Circle, Annals of Math Studies 142, Princeton University Press, 1996. | Zbl | MR
37. , Strong rigidity of locally symmetric spaces, Annals of Math. Studies 78, Princeton University Press, 1972. | Zbl
38. , Kleinian groups which are limits of geometrically finite groups, Preprint. | Zbl
39. , Compact submanifolds of 3-manifolds, J. Lond. Math. Soc., (2) 7 (1973), 246-250. | Zbl | MR
40. , On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, In Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference. Annals of Math. Studies 97, Princeton, 1981. | Zbl | MR
41. , Quasiconformal homeomorphisms and dynamics II: Structural stability implies hyperbolicity for Kleinian groups, Acta Math., 155 (1985), 243-260. | Zbl | MR
42. W. P. Thurston, Geometry and Topology of Three-Manifolds, Princeton Lecture Notes, 1979.
43. , Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Am. Math. Soc., 6 (1982), 357-381. | Zbl | MR
44. , Hyperbolic structures on 3-manifolds I: Deformations of acylindrical manifolds, Ann. Math., 124 (1986), 203-246. | Zbl | MR
45. W. P. Thurston, Hyperbolic structures on 3-manifolds II: Surface groups and 3-manifolds which fiber over the circle, Preprint, arXiv:math.GT/9801045 (1986). | MR
Cité par Sources :






