@article{PMIHES_2003__98__105_0, author = {Chang, Sun-Yung A. and Gursky, Matthew J. and Yang, Paul C.}, title = {A conformally invariant sphere theorem in four dimensions}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {105--143}, publisher = {Springer}, volume = {98}, year = {2003}, doi = {10.1007/s10240-003-0017-z}, mrnumber = {2031200}, zbl = {1066.53079}, language = {en}, url = {http://www.numdam.org/articles/10.1007/s10240-003-0017-z/} }
TY - JOUR AU - Chang, Sun-Yung A. AU - Gursky, Matthew J. AU - Yang, Paul C. TI - A conformally invariant sphere theorem in four dimensions JO - Publications Mathématiques de l'IHÉS PY - 2003 SP - 105 EP - 143 VL - 98 PB - Springer UR - http://www.numdam.org/articles/10.1007/s10240-003-0017-z/ DO - 10.1007/s10240-003-0017-z LA - en ID - PMIHES_2003__98__105_0 ER -
%0 Journal Article %A Chang, Sun-Yung A. %A Gursky, Matthew J. %A Yang, Paul C. %T A conformally invariant sphere theorem in four dimensions %J Publications Mathématiques de l'IHÉS %D 2003 %P 105-143 %V 98 %I Springer %U http://www.numdam.org/articles/10.1007/s10240-003-0017-z/ %R 10.1007/s10240-003-0017-z %G en %F PMIHES_2003__98__105_0
Chang, Sun-Yung A.; Gursky, Matthew J.; Yang, Paul C. A conformally invariant sphere theorem in four dimensions. Publications Mathématiques de l'IHÉS, Volume 98 (2003), pp. 105-143. doi : 10.1007/s10240-003-0017-z. http://www.numdam.org/articles/10.1007/s10240-003-0017-z/
1. A sharp inequlity of J. Moser for higher derivatives. Annals of Math., 128 (1988), 385-398. | MR | Zbl
,2. Einstein Manifolds. Berlin: Springer-Verlag (1987). | MR | Zbl
,3. Explicit functional determinants in four dimensions. Proc. A.M.S., 113 (1991), 669-682. | MR | Zbl
and ,4. An equation of Monge-Ampere type in conformal geometry, and four-manifolds of positive Ricci curvature. Annals of Math., 155 (2002), 711-789. | MR | Zbl
, , and ,5. An a priori estimate for a fully nonlinear equation on four-manifolds. J. D'Analyse Math., 87 (2002), to appear. | Zbl
, , and ,6. Regularity of a fourth order nonlinear PDE with critical exponent. Amer. J. Math., 121 (1999), 215-257. | MR | Zbl
, , and ,7. Extremal metrics of zeta function determinants on 4-manifolds. Annals of Math., 142 (1995), 171-212. | MR | Zbl
and ,8. On the curvature of piecewise flat spaces. Comm. Math. Phys., 92 (1984), 405-454. | MR | Zbl
, , and ,9. Self-dual Kähler manifolds and Einstein manifolds of dimension four. Compositio Math., 49 (1983), 405-433. | Numdam | MR | Zbl
,10. Classical solutions of fully nonlinear, convex, second-order elliptic equations. Comm. Pure Appl. Math., 35 (1982), 333-363. | MR | Zbl
,11. The topology of four-dimensional manifolds. J. Diff. Geom., 17 (1982), 357-453. | MR | Zbl
,12. The Weyl functional, deRham cohomology, and Kähler-Einstein metrics. Annals of Math., 148 (1998), 315-337. | MR | Zbl
,13. Elliptic Partial Differential Equations of Second Order. Berlin, Heidelberg: Springer (1983). | MR | Zbl
and ,14. Four-manifolds with positive curvature operator. J. Diff. Geom., 24 (1986), 153-179. | MR | Zbl
,15. On compact four-dimensional Einstein manifolds. J. Diff. Geom., 9 (1974), 435-442. | MR | Zbl
,16. Ricci deformation of the metric on a Riemannian manifold. J. Diff. Geom., 21 (1985), 47-62. | MR | Zbl
,17. Boundedly inhomogeneous elliptic and parabolic equations in a domain. Izv. Akad. Mauk. SSSR Ser. Mat., 47 (1983), 75-108. | MR | Zbl
,18. Degree theory for second order nonlinear elliptic operators and its applications. Comm. PDE, 14 (1989), 1547-1578. | MR | Zbl
,19. Pointwise pinched manifolds are Spaceforms 44 (1986). AMS Proc. of Symp. in Pure Math., Arcata '84, 307-328. | Zbl
,20. A sharp characterization of the smooth 4-sphere in curvature terms. Comm. Anal. Geom., 6 (1998), 21-65. | MR | Zbl
,21. Riemannian Geometry. Springer Graduate Texts in Mathematics 171. New York (1998). | MR | Zbl
,22. The curvature of four-dimensional Einstein spaces, in Global Analysis (Papers in honor of K. Kodaira), D. Spencer and S. Iyanaga (eds.), pp. 355-365. Tokyo: University of Tokyo Press (1969). | MR | Zbl
and ,23. Regularity of weak solutions to critical exponent variational equations. Math. Res. Lett., 7 (2000), 651-656. | MR | Zbl
and ,Cited by Sources: