Doubles mélanges des polylogarithmes multiples aux racines de l'unité
Publications Mathématiques de l'IHÉS, Volume 95 (2002), pp. 185-231.
@article{PMIHES_2002__95__185_0,
     author = {Racinet, Georges},
     title = {Doubles m\'elanges des polylogarithmes multiples aux racines de l'unit\'e},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {185--231},
     publisher = {Institut des Hautes \'Etudes Scientifiques},
     volume = {95},
     year = {2002},
     zbl = {1050.11066},
     language = {fr},
     url = {http://www.numdam.org/item/PMIHES_2002__95__185_0/}
}
TY  - JOUR
AU  - Racinet, Georges
TI  - Doubles mélanges des polylogarithmes multiples aux racines de l'unité
JO  - Publications Mathématiques de l'IHÉS
PY  - 2002
SP  - 185
EP  - 231
VL  - 95
PB  - Institut des Hautes Études Scientifiques
UR  - http://www.numdam.org/item/PMIHES_2002__95__185_0/
LA  - fr
ID  - PMIHES_2002__95__185_0
ER  - 
%0 Journal Article
%A Racinet, Georges
%T Doubles mélanges des polylogarithmes multiples aux racines de l'unité
%J Publications Mathématiques de l'IHÉS
%D 2002
%P 185-231
%V 95
%I Institut des Hautes Études Scientifiques
%U http://www.numdam.org/item/PMIHES_2002__95__185_0/
%G fr
%F PMIHES_2002__95__185_0
Racinet, Georges. Doubles mélanges des polylogarithmes multiples aux racines de l'unité. Publications Mathématiques de l'IHÉS, Volume 95 (2002), pp. 185-231. http://www.numdam.org/item/PMIHES_2002__95__185_0/

[1] D. Bar-Natan, Non-associative tangles, Geometric topology (Athens, GA, 1993), Amer. Math. Soc., Providence, RI, 1997, pp. 139-183. | MR | Zbl

[2] D. Bar-Natan, On associators and the Grothendieck-Teichmüller group. I, Selecta Math. (N.S.) 4, No. 2 (1998), 183-212, arXiv:q-alg/960621. | MR | Zbl

[3] M. BIGOTTE, G. JACOB, N. OUSSOUS and M. PETITOT, Tables des relations de la fonction zêta colorée, prépublication du LIFL, Université Lille I, 1998.

[4] L. BOUTET DE MONVEL, Remarques sur les séries logarithmiques divergentes, Exposé au colloque « polylogarithmes et conjecture de Deligne-Ihara » au C.I.R.M. (Luminy), http://www.math.jussieu.fr/~boutet, avril 2000.

[5] D. J. BROADHURST, Conjectured enumeration of irreducible multiple zeta values, from knots and Feynman diagrams, Publication électronique, décembre 1996, arXiv:hep-th/9612012.

[6] P. CARTIER, Construction combinatoire des invariants de Vassiliev-Kontsevich des noeuds, R.C.P. 25, Vol. 45 (French) (Strasbourg, 1992-1993), Univ. Louis Pasteur, Strasbourg, 1993, pp. 1-10. | MR

[7] K.-T. Chen, Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula, Ann. of Math. (2) 65 (1957), 163-178. | MR | Zbl

[8] K. T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83, no. 5 (1977), 831-879. | MR | Zbl

[9] P. Deligne, Le groupe fondamental de la droite projective moins trois points, Galois groups over Q (Berkeley, CA, 1987), Springer, New York, 1989, pp. 79-297. | MR | Zbl

[10] P. DELIGNE, Multizeta values, Notes d'exposés, IAS, Princeton, 2001.

[11] P. DELIGNE, Communication personelle, juin 2001.

[12] M. Demazure and P. Gabriel, Groupes algébriques. Tome I : Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Paris, 1970. | MR | Zbl

[13] V. G. Drinfeld, On quasitriangular quasi-Hopf algebras and a group closely related to Gal(Q ¯/Q), Leningrad Mathematical Journal 2 (1991), 829-860. | MR | Zbl

[14] J. ÉCALLE, La libre génération des multizêtas et leur décomposition canonico-explicite en irréductibles, Notes de séminaire, automne 1999.

[15] M. ESPIE, J.-C. NOVELLI and G. RACINET, Experimental results about double shuffles of polyzetas, En préparation.

[16] P. Etingof and D. Kazhdan, Quantization of Lie bialgebras. I, Selecta Math. (N.S.) 2, No. 1 (1996), 1-41, arXiv:q-alg/9506005. | MR | Zbl

[17] I. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. Retakh and J. Thibon, Non-commutative symmetric func- tions, Advances in Mathematics 112 (1995), 218-348. | MR | Zbl

[18] M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2) 78 (1963), 267-288. | MR | Zbl

[19] A. B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Mathematical Research Letters 5 (1998), 497-516. | MR | Zbl

[20] A. B. Goncharov, The dihedral Lie algebras and Galois symmetries of π 1 (l) ( 1 -({0,}µ N )), Duke Math. J. 110, no. 3 (2001), 397-487, arXiv:math.AG/0009121. | Zbl

[21] A. B. GONCHAROV, Multiple polylogarithms and mixed Tate motives, Publication électronique, mars 2001, arXiv:math.AG/0103059.

[22] R. HAIN and M. MATSUMOTO, Weighted completion of Galois groups and some conjectures of Deligne, Publication électronique, juin 2000, arXiv:math.AG/0006158.

[23] M. HOANG NGOC and M. PETITOT, Lyndon words, polylogarithms and the Riemann zeta function, Discrete Mathematics 217 (1-3) (2000), 273-292. | MR | Zbl

[24] M. Hoffman, The algebra of multiple harmonic series, Journal of Algebra 194, no. 2 (1997), 477-495. | MR | Zbl

[25] K. IHARA and M. KANEKO, Derivation relations and regularized double shuffle relations of multiple zeta values, Prépublication, Univ. Kyushu, 2000.

[26] Y. Ihara, Automorphisms of pure sphere braid groups and Galois representations, The Grothendieck Festschrift, Vol. II, Birkhäuser Boston, Boston, MA, 1990, pp. 353-373. | MR | Zbl

[27] Y. Ihara, Braids, Galois groups, and some arithmetic functions, 1990 Int. Cong. of Mathematicians, Math. Soc. of Japan, Tokyo, 1991, pp. 99-120. | MR | Zbl

[28] Y. Ihara, On the stable derivation algebra associated with some braid groups, Israel J. Math. 80, no. 1-2 (1992), pp. 135-153, | MR | Zbl

[29] Y. Ihara and M. Matsumoto, On Galois actions on profinite completions of braid groups, Recent developments in the inverse Galois problem (Seattle, WA, 1993), Amer. Math. Soc., Providence, RI, 1995, pp. 173-200. | MR | Zbl

[30] M. Kontsevitch, Operads and motives in deformation quantization, Lett. Math. Phys. 48, no. 1 (1999), 35-72, Moshé Flato (1937-1998). | MR | Zbl

[31] T. T. Q . Le and J. Murakami, Kontsevich's integral for the Kauffman polynomial, Nagoya Math. J. 142 (1996), 39-65. | Zbl

[32] C. Malvenuto and C. Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra, Journal of Algebra 177, no. 3 (1995), 967-982. | MR | Zbl

[33] G. RACINET, Séries génératrices non-commutatives de polyzêtas et associateurs de Drinfel'd, Thèse de doctorat, Université de Picardie-Jules-Verne, 2000, http://www.dma.ens.fr/~racinet.

[34] G. Racinet, Torseurs associés à certaines relations algébriques entre polyzêtas aux racines de l'unité, Comptes-rendus de l'Académie des Sciences, Série I 333, no. 1 (2001), 5-10, arXiv:math.QA/0012024. | Zbl

[35] G. Racinet, Algèbres de Lie des valeurs formelles d'hyperlogarithmes aux racines de l'unité, Comptes-rendus de l'Académie des Sciences, Série I 333, no. 1 (2001), 11-16, arXiv:math.QA/0012024. | Zbl

[36] R. Ree, Lie elements and an algebra associated with shuffles, Ann. of Math. (2) 68 (1958), 210-220. | MR | Zbl

[37] C. Reutenauer, Free Lie algebras, London Mathematical Society Monographs, New series, no. 7, Oxford, 1993. | MR | Zbl

[38] D. E. TAMARKIN, Formality of Chain Operad of Small Squares, Publication électronique, septembre 1998, arXiv:math.QA/9809164.

[39] D. Zagier, Values of zeta functions and their applications, First European Congress of Mathematics, Vol. II (Paris, 1992), Birkhäuser, Basel, 1994, pp. 497-512. | MR | Zbl