Mean dimension, small entropy factors and an embedding theorem
Publications Mathématiques de l'IHÉS, Volume 89 (1999), pp. 227-262.
@article{PMIHES_1999__89__227_0,
     author = {Lindenstrauss, Elon},
     title = {Mean dimension, small entropy factors and an embedding theorem},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {227--262},
     publisher = {Institut des Hautes \'Etudes Scientifiques},
     volume = {89},
     year = {1999},
     mrnumber = {2001j:37033},
     zbl = {0978.54027},
     language = {en},
     url = {http://www.numdam.org/item/PMIHES_1999__89__227_0/}
}
TY  - JOUR
AU  - Lindenstrauss, Elon
TI  - Mean dimension, small entropy factors and an embedding theorem
JO  - Publications Mathématiques de l'IHÉS
PY  - 1999
SP  - 227
EP  - 262
VL  - 89
PB  - Institut des Hautes Études Scientifiques
UR  - http://www.numdam.org/item/PMIHES_1999__89__227_0/
LA  - en
ID  - PMIHES_1999__89__227_0
ER  - 
%0 Journal Article
%A Lindenstrauss, Elon
%T Mean dimension, small entropy factors and an embedding theorem
%J Publications Mathématiques de l'IHÉS
%D 1999
%P 227-262
%V 89
%I Institut des Hautes Études Scientifiques
%U http://www.numdam.org/item/PMIHES_1999__89__227_0/
%G en
%F PMIHES_1999__89__227_0
Lindenstrauss, Elon. Mean dimension, small entropy factors and an embedding theorem. Publications Mathématiques de l'IHÉS, Volume 89 (1999), pp. 227-262. http://www.numdam.org/item/PMIHES_1999__89__227_0/

[1] J. Auslander, Minimal flows and their extensions, Amsterdam, North-Holland (1988). | MR | Zbl

[2] W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press (1941). | JFM | MR | Zbl

[3] A. Jaworski, University of Maryland Ph. D. Thesis (1974).

[4] S. Kakutani, A proof of Bebutov's theorem, J. of Differential Eq. 4 (1968), 194-201. | Zbl

[5] E. Lindenstrauss, Lowering Topological Entropy, J. d'Analyse Math. 67 (1995), 231-267. | MR | Zbl

[6] E. Lindenstrauss and B. Weiss, On Mean Dimension, to appear in Israel J. of Math. | Zbl

[7] M. Shub and B. Weiss, Can one always lower topological entropy ?, Ergod. Th. & Dynam. Sys. 11 (1991), 535-546. | MR | Zbl