Integral representation of measures associated with a foliation
Publications Mathématiques de l'IHÉS, Volume 48 (1978), pp. 127-132.
@article{PMIHES_1978__48__127_0,
     author = {Ruelle, David},
     title = {Integral representation of measures associated with a foliation},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {127--132},
     publisher = {Institut des Hautes \'Etudes Scientifiques},
     volume = {48},
     year = {1978},
     mrnumber = {80d:58040},
     zbl = {0398.57013},
     language = {en},
     url = {http://www.numdam.org/item/PMIHES_1978__48__127_0/}
}
TY  - JOUR
AU  - Ruelle, David
TI  - Integral representation of measures associated with a foliation
JO  - Publications Mathématiques de l'IHÉS
PY  - 1978
SP  - 127
EP  - 132
VL  - 48
PB  - Institut des Hautes Études Scientifiques
UR  - http://www.numdam.org/item/PMIHES_1978__48__127_0/
LA  - en
ID  - PMIHES_1978__48__127_0
ER  - 
%0 Journal Article
%A Ruelle, David
%T Integral representation of measures associated with a foliation
%J Publications Mathématiques de l'IHÉS
%D 1978
%P 127-132
%V 48
%I Institut des Hautes Études Scientifiques
%U http://www.numdam.org/item/PMIHES_1978__48__127_0/
%G en
%F PMIHES_1978__48__127_0
Ruelle, David. Integral representation of measures associated with a foliation. Publications Mathématiques de l'IHÉS, Volume 48 (1978), pp. 127-132. http://www.numdam.org/item/PMIHES_1978__48__127_0/

[1] R. Bowen, Anosov foliations are hyperfinite. Preprint. | Zbl

[2] R. Bowen and B. Marcus, Unique ergodicity for horocycle foliation. Preprint. | Zbl

[3] D. Capocaccia, A definition of Gibbs state for a compact set with Zv action, Commun. Math. Phys., 48 (1976), 85-88. | MR

[4] G. Choquet et P.-A. Meyer, Existence et unicité des représentations intégrales dans les convexes compacts quelconques, Ann. Inst. Fourier, 13 (1963), 139-154. | Numdam | MR | Zbl

[5] A. Connes. Unpublished.

[6] R. Edwards, K. Millett and D. Sullivan, Foliations with all leaves compact, Topology, 16 (1977), 13-32. | MR | Zbl

[7] L. Garnett, An ergodic theory for foliations. Preprint.

[8] J. Plante, Foliations with measure preserving holonomy, Ann. Math., 102 (1975), 327-362. | MR | Zbl

[9] D. Ruelle, Thermodynamic formalism, Addison-Wesley, Reading, Mass., 1978. | MR | Zbl

[10] D. Ruelle and D. Sullivan, Currents, flows and diffeomorphisms, Topology, 14 (1975), 319-327. | MR | Zbl

[11] S. Schwartzmann, Asymptotic cycles, Ann. Math., 66 (1957), 270-284. | MR | Zbl

[12] M. Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math., 91 (1969), 175-199. | MR | Zbl

[13] Ia. G. Sinai, Gibbsian measures in ergodic theory, Uspehi Mat. Nauk, 27, n° 4 (1972), 21-64. English translation, Russian Math. Surveys, 27, n° 4 (1972), 21-69. | Zbl

[14] D. Sullivan, Cycles for the dynamical study of foliated manifolds and complex manifolds, Inventiones math., 36 (1976), 225-255. | EuDML | MR | Zbl

[15] D. Sullivan and R. F. Williams, On the homology of attractors, Topology, 15 (1976), 259-262. | MR | Zbl