@article{PMIHES_1968__34__129_0, author = {Segal, Graeme}, title = {Equivariant $K$-theory}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {129--151}, publisher = {Institut des Hautes \'Etudes Scientifiques}, volume = {34}, year = {1968}, mrnumber = {234452}, zbl = {0199.26202}, language = {en}, url = {http://www.numdam.org/item/PMIHES_1968__34__129_0/} }
Segal, Graeme. Equivariant $K$-theory. Publications Mathématiques de l'IHÉS, Volume 34 (1968), pp. 129-151. http://www.numdam.org/item/PMIHES_1968__34__129_0/
[1] Power operations in K-theory, Quart. J. of Math. (Oxford), 17 (1966), 165-193. | MR | Zbl
,[2] Lectures on K-theory, mimeographed, Harvard, 1964.
,[3] On the periodicity theorem for complex vector bundles, Acta mathematica, 112 (1964), 229-247. | MR | Zbl
and ,[4] Clifford modules, Topology, 3 (Suppl. 1) (1964), 3-38. | MR | Zbl
, and ,[5] Vector bundles and homogeneous spaces, Differential geometry, Proc. of Symp. in Pure Math., 3 (1961), Amer. Math. Soc., 7-38. | MR | Zbl
and ,[6] The index of elliptic operators I, II (To appear). | Zbl
, , etc.,[7] Seminar on transformation groups, Ann. of Math. Studies, n° 46, Princeton, 1960. | MR | Zbl
et al.,[8] Intégration, chap. 1-4, Paris, Hermann, 1952, A.S.I., 1175. | Zbl
,[9] Homological algebra, Princeton University Press, 1956. | MR | Zbl
and ,[10] Foundations of algebraic topology, Princeton University Press, 1952. | MR | Zbl
and ,[11] Nombres de Chern et groupes finis (To appear).
,[12] Cohomology of topological groups and solvmanifolds, Ann. of Math., 73 (1961), 20-48. | MR | Zbl
,[13] The classification of G-spaces, Mem. Amer. Math. Soc., n° 36, 1960. | MR | Zbl
,[14] On the existence of slices for actions of non-compact Lie groups, Ann. of Math., 73 (1961), 295-323. | MR | Zbl
,[15] Classifying-spaces and spectral sequences, Publ. Math. Inst. des Hautes études Scient. (Paris), 34 (1968). | Numdam | MR | Zbl
,[16] The representation-ring of a compact Lie group, Publ. Math. Inst. des Hautes études Scient. (Paris), 34 (1968). | Numdam | MR | Zbl
,