[Critères d’algébricité et de transcendance différentielle pour les séries comptant les marches pondérées du quadrant]
Nous considérons des marches à petits pas avec poids dans le quadrant positif, et nous fournissons des résultats d’algébricité et de transcendance différentielle pour les fonctions génératrices sous-jacentes : nous prouvons que, selon les probabilités des pas permis, certaines fonctions génératrices sont algébriques sur le corps des fonctions rationnelles, alors que d’autres ne satisfont aucune équation différentielle algébrique. Nos techniques utilisent la théorie de Galois différentielle des équations aux différences ainsi que l’analyse complexe (notamment la paramétrisation de Weierstrass des courbes elliptiques). Nous étendons aussi au cas pondéré plusieurs résultats intermédiaires clé, comme un théorème de prolongement analytique des fonctions génératrices.
We consider weighted small step walks in the positive quadrant, and provide algebraicity and differential transcendence results for the underlying generating functions: we prove that depending on the probabilities of allowed steps, certain of the generating functions are algebraic over the field of rational functions, while some others do not satisfy any algebraic differential equation with rational function coefficients. Our techniques involve differential Galois theory for difference equations as well as complex analysis (Weierstrass parameterization of elliptic curves). We also extend to the weighted case many key intermediate results, as a theorem of analytic continuation of the generating functions.
Publié le :
Classification : 05A15, 30D05, 39A06
Mots clés : Random walks in the quarter plane, Difference Galois theory, Elliptic functions, Transcendence, Algebraicity
@article{PMB_2019___1_41_0, author = {Dreyfus, Thomas and Raschel, Kilian}, title = {Differential transcendence & algebraicity criteria for the series counting weighted quadrant walks}, journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres}, pages = {41--80}, publisher = {Presses universitaires de Franche-Comt\'e}, number = {1}, year = {2019}, doi = {10.5802/pmb.29}, language = {en}, url = {http://www.numdam.org/articles/10.5802/pmb.29/} }
TY - JOUR AU - Dreyfus, Thomas AU - Raschel, Kilian TI - Differential transcendence & algebraicity criteria for the series counting weighted quadrant walks JO - Publications mathématiques de Besançon. Algèbre et théorie des nombres PY - 2019 DA - 2019/// SP - 41 EP - 80 IS - 1 PB - Presses universitaires de Franche-Comté UR - http://www.numdam.org/articles/10.5802/pmb.29/ UR - https://doi.org/10.5802/pmb.29 DO - 10.5802/pmb.29 LA - en ID - PMB_2019___1_41_0 ER -
Dreyfus, Thomas; Raschel, Kilian. Differential transcendence & algebraicity criteria for the series counting weighted quadrant walks. Publications mathématiques de Besançon. Algèbre et théorie des nombres, no. 1 (2019), pp. 41-80. doi : 10.5802/pmb.29. http://www.numdam.org/articles/10.5802/pmb.29/
[1] Counting quadrant walks via Tutte’s invariant method (2017) (https://arxiv.org/abs/1708.08215)
[2] On 3-dimensional lattice walks confined to the positive octant, Ann. Comb., Volume 20 (2016) no. 4, pp. 661-704 | Article | MR 3572381 | Zbl 1354.05006
[3] The complete generating function for Gessel walks is algebraic, Proc. Am. Math. Soc., Volume 138 (2010) no. 9, pp. 3063-3078 (With an appendix by Mark van Hoeij) | Article | MR 2653931 | Zbl 1206.05013
[4] Non-D-finite excursions in the quarter plane, J. Comb. Theory, Ser. A, Volume 121 (2014), pp. 45-63 | Article | MR 3115331 | Zbl 1279.05003
[5] Walks with small steps in the quarter plane, Algorithmic probability and combinatorics (Contemporary Mathematics), Volume 520, American Mathematical Society, 2010, pp. 1-39 | Article | MR 2681853 | Zbl 1209.05008
[6] Linear recurrences with constant coefficients: the multivariate case, Discrete Math., Volume 225 (2000) no. 1-3, pp. 51-75 Formal power series and algebraic combinatorics (Toronto, ON, 1998) | Article | MR 1798324 | Zbl 0963.05005
[7] Random walks in cones, Ann. Probab., Volume 43 (2015) no. 3, pp. 992-1044 | Article | MR 3342657 | Zbl 1332.60066
[8] Hypertranscendance of solutions of Mahler equations, J. Eur. Math. Soc., Volume 20 (2018) no. 9, pp. 2209-2238
[9] Walks in the quarter plane, genus zero case (2017) (https://arxiv.org/abs/1710.02848)
[10] On the nature of the generating series of walks in the quarter plane, Invent. Math., Volume 213 (2018) no. 1, pp. 139-203
[11] Galois groups of difference equations of order two on elliptic curves, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 11 (2015), 003, 23 pages | Article | MR 3313679 | Zbl 1311.39002
[12] Infinite orders and non-D-finite property of 3-dimensional lattice walks, Electron. J. Comb., Volume 23 (2016) no. 3, 3.38, 15 pages | MR 3558075 | Zbl 1344.05013
[13] Discrete integrable systems. QRT maps and elliptic surfaces, Springer Monographs in Mathematics, Springer, 2010, xxii+627 pages | Article | MR 2683025 | Zbl 1219.14001
[14] Random walks in the quarter-plane. Algebraic methods, boundary value problems and applications, Applications of Mathematics, 40, Springer, 1999, xvi+156 pages | Article | MR 1691900 | Zbl 0932.60002
[15] On the holonomy or algebraicity of generating functions counting lattice walks in the quarter-plane, Markov Process. Relat. Fields, Volume 16 (2010) no. 3, pp. 485-496 | MR 2759770 | Zbl 1284.05018
[16] Random walks in the quarter-plane with zero drift: an explicit criterion for the finiteness of the associated group, Markov Process. Relat. Fields, Volume 17 (2011) no. 4, pp. 619-636 | MR 2918123 | Zbl 1263.60039
[17] Galoisian approach to differential transcendence, Galois theories of linear difference equations: an introduction (Mathematical Surveys and Monographs), Volume 211, American Mathematical Society, 2016, pp. 43-102 | MR 3497726 | Zbl 1347.39001
[18] Differential Galois theory of linear difference equations, Math. Ann., Volume 342 (2008) no. 2, pp. 333-377 | Article | MR 2425146 | Zbl 1163.12002
[19] Walks in the quarter plane with multiple steps, Proceedings of FPSAC 2015 (Discrete Math. Theor. Comput. Sci. Proc.) (2015), pp. 25-36 | MR 3470849 | Zbl 1335.05012
[20] On the functions counting walks with small steps in the quarter plane, Publ. Math., Inst. Hautes Étud. Sci., Volume 116 (2012), pp. 69-114 | Article | MR 3090255
[21] New steps in walks with small steps in the quarter plane: series expressions for the generating functions, Ann. Comb., Volume 19 (2015) no. 3, pp. 461-511 | Article | MR 3395491 | Zbl 1326.05010
[22] Singularity analysis via the iterated kernel method, Comb. Probab. Comput., Volume 23 (2014) no. 5, pp. 861-888 | Article | MR 3249228 | Zbl 1298.05026
[23] Classifying lattice walks restricted to the quarter plane, J. Comb. Theory, Ser. A, Volume 116 (2009) no. 2, pp. 460-477 | Article | MR 2475028
[24] Two non-holonomic lattice walks in the quarter plane, Theor. Comput. Sci., Volume 410 (2009) no. 38-40, pp. 3616-3630 | Article | MR 2553316 | Zbl 1228.05038
[25] Counting walks in a quadrant: a unified approach via boundary value problems, J. Eur. Math. Soc., Volume 14 (2012) no. 3, pp. 749-777 | Article | MR 2911883 | Zbl 1238.05014
[26] A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Cambridge Mathematical Library, Cambridge University Press, 1996, vi+608 pages | Article | MR 1424469 | Zbl 0951.30002
Cité par Sources :