The purpose of this survey is to provide the reader with a user friendly introduction to the two articles [8] and [9], which give a Galoisian description of the action of an endomorphism of a differential field on the solutions of a linear differential equation defined over . After having introduced the theory, we give some concrete examples.
Le but de ce survol est de présenter d’une façon accessible le contenu des articles [8] et [9], qui donnent une description galoisienne de l’action d’un endomorphisme d’un corps différentiel sur les solutions d’une équation différentielle linéaire à coefficients dans . Après une présentation de la théorie nous donnons quelques exemples d’applications.
Published online:
Keywords: Differential Galois theory, discrete parameter, difference algebra
@article{PMB_2019___1_21_0, author = {Di Vizio, Lucia}, title = {Action of an endomorphism on (the solutions of) a linear differential equation}, journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres}, pages = {21--39}, publisher = {Presses universitaires de Franche-Comt\'e}, number = {1}, year = {2019}, doi = {10.5802/pmb.28}, language = {en}, url = {http://www.numdam.org/articles/10.5802/pmb.28/} }
TY - JOUR AU - Di Vizio, Lucia TI - Action of an endomorphism on (the solutions of) a linear differential equation JO - Publications mathématiques de Besançon. Algèbre et théorie des nombres PY - 2019 SP - 21 EP - 39 IS - 1 PB - Presses universitaires de Franche-Comté UR - http://www.numdam.org/articles/10.5802/pmb.28/ DO - 10.5802/pmb.28 LA - en ID - PMB_2019___1_21_0 ER -
%0 Journal Article %A Di Vizio, Lucia %T Action of an endomorphism on (the solutions of) a linear differential equation %J Publications mathématiques de Besançon. Algèbre et théorie des nombres %D 2019 %P 21-39 %N 1 %I Presses universitaires de Franche-Comté %U http://www.numdam.org/articles/10.5802/pmb.28/ %R 10.5802/pmb.28 %G en %F PMB_2019___1_21_0
Di Vizio, Lucia. Action of an endomorphism on (the solutions of) a linear differential equation. Publications mathématiques de Besançon. Algèbre et théorie des nombres, no. 1 (2019), pp. 21-39. doi : 10.5802/pmb.28. http://www.numdam.org/articles/10.5802/pmb.28/
[1] Differential Galois theory, From number theory to physics (Les Houches, 1989), Springer, 1992, pp. 413-439 | Zbl
[2] Galois Theory of Parameterized Differential Equations and Linear Differential Algebraic Groups, Differential Equations and Quantum Groups (IRMA Lectures in Mathematics and Theoretical Physics), Volume 9, European Mathematical Society, 2007, pp. 113-157 | Zbl
[3] Model theory of difference fields. II. Periodic ideals and the trichotomy in all characteristics, Proc. Lond. Math. Soc., Volume 85 (2002) no. 2, pp. 257-311 | DOI | MR
[4] Difference algebra, Interscience Publishers, 1965, xiv+355 pages | MR | Zbl
[5] Algebraic groups and differential Galois theory, Graduate Studies in Mathematics, 122, American Mathematical Society, 2011, xiv+225 pages
[6] Approche galoisienne de la transcendance différentielle, Transendance et irrationalité (SMF Journée Annuelle), Société Mathématique de France, 2012, pp. 1-20 | Zbl
[7] Descent for differential Galois theory of difference equations: confluence and -dependence, Pac. J. Math., Volume 256 (2012) no. 1, pp. 79-104
[8] Difference Galois theory of linear differential equations, Adv. Math., Volume 260 (2014), pp. 1-58 | Zbl
[9] Difference algebraic relations among solutions of linear differential equations, J. Inst. Math. Jussieu, Volume 16 (2017) no. 1, pp. 59-119 | DOI | MR
[10] An introduction to -functions, Annals of Mathematics Studies, 133, Princeton University Press, 1994
[11] Galoisian approach to differential transcendence, Galois theories of linear difference equations: an introduction (Mathematical Surveys and Monographs), Volume 211, American Mathematical Society, 2016, pp. 43-102 | Zbl
[12] Differential Galois theory of linear difference equations, Math. Ann., Volume 342 (2008) no. 2, pp. 333-377
[13] Differential algebra and algebraic groups, Pure and Applied Mathematics, 54, Academic Press Inc., 1973, xviii+446 pages | MR | Zbl
[14] On algebraic -groups, Trans. Am. Math. Soc., Volume 359 (2007) no. 3, pp. 1325-1337
[15] Generalized differential Galois theory, Trans. Am. Math. Soc., Volume 360 (2008) no. 8, pp. 4441-4495
[16] Difference algebra, Algebra and Applications, 8, Springer, 2008
[17] Lectures on differential Galois theory, University Lecture Series, 7, American Mathematical Society, 1994
[18] -Galois theory of linear difference equations, Int. Math. Res. Not. (2015) no. 12, pp. 3962-4018
[19] The formal classification of linear difference operators, Indag. Math., Volume 45 (1983) no. 2, pp. 249-261 | Zbl
[20] Galois theory of linear differential equations, Springer, 2003, viii+180 pages
[21] La théorie de Galois différentielle, Gaz. Math., Soc. Math. Fr. (2017) no. 152, pp. 59-63 | Zbl
[22] Introduction to the Galois theory of linear differential equations, Algebraic theory of differential equations (London Mathematical Society Lecture Note Series), Volume 357, Cambridge University Press, 2009, pp. 1-82
[23] A Chevalley theorem for difference equations, Math. Ann., Volume 354 (2012) no. 4, pp. 1369-1396 | DOI | MR
[24] Galois theory of difference equations with periodic parameters, Commun. Algebra, Volume 42 (2014) no. 9, pp. 3902-3943 | DOI | MR
[25] A Galois-theoretic proof of the differential transcendence of the incomplete Gamma function, J. Algebra, Volume 389 (2013), pp. 119-127 | DOI | MR
[26] Computation of the unipotent radical of the differential Galois group for a parameterized second-order linear differential equation, Adv. Appl. Math., Volume 57 (2014), pp. 44-59 | DOI | MR
[27] On the computation of the parameterized differential Galois group for a second-order linear differential equation with differential parameters, J. Symb. Comput., Volume 75 (2016), pp. 25-55 | DOI | MR
[28] Computation of the difference-differential Galois group and differential relations among solutions for a second-order linear difference equation, Commun. Contemp. Math., Volume 19 (2017) no. 6, 1650056, 42 pages | DOI | MR | Zbl
[29] Galois groups for integrable and projectively integrable linear difference equations, J. Algebra, Volume 480 (2017), pp. 423-449 | DOI | MR
[30] Torsors for Difference Algebraic Groups (2016) (https://arxiv.org/abs/1607.07035)
[31] Théories de Galois différentielles et transcendance, Ann. Inst. Fourier, Volume 59 (2009) no. 7, pp. 2773-2803 | MR
[32] Generalized linear cellular automata in groups and difference Galois theory, J. Difference Equ. Appl., Volume 21 (2015) no. 2, pp. 127-154 | DOI | MR | Zbl
[33] Irréductibilité de la première équation de Painlevé, C. R. Math. Acad. Sci. Paris, Volume 343 (2006) no. 2, pp. 95-98 | DOI | MR
[34] Le groupoïde de Galois de et son irréductibilité, Comment. Math. Helv., Volume 83 (2008) no. 3, pp. 471-519 | DOI | MR
[35] Non-integrability by discrete quadratures, J. Reine Angew. Math., Volume 687 (2014), pp. 87-112 | DOI | MR
[36] On the existence of telescopers for mixed hypergeometric terms, J. Symb. Comput., Volume 68 (2015), pp. 1-26 | DOI | MR
[37] Residues and telescopers for bivariate rational functions, Adv. Appl. Math., Volume 49 (2012) no. 2, pp. 111-133 | DOI | MR
[38] Real and -adic Picard-Vessiot fields, Math. Ann., Volume 365 (2016) no. 1-2, pp. 93-103 | DOI | MR
[39] Courbures, groupes de Galois génériques et -groupoïde de Galois d’un système aux -différences, C. R. Math. Acad. Sci. Paris, Volume 348 (2010) no. 17-18, pp. 951-954 | DOI | MR
[40] Computing the Galois group of some parameterized linear differential equation of order two, Proc. Am. Math. Soc., Volume 142 (2014) no. 4, pp. 1193-1207 | DOI | MR
[41] A density theorem in parametrized differential Galois theory, Pac. J. Math., Volume 271 (2014) no. 1, pp. 87-141 | DOI | MR
[42] Hypertranscendence of solutions of Mahler equations (2015) (https://arxiv.org/abs/1507.03361)
[43] Functional relations of solutions of -difference equations (2016) (https://arxiv.org/abs/1603.06771)
[44] Walks in the quarter plane, genus zero case (2017) (https://arxiv.org/abs/1710.02848)
[45] Differential transcendence & algebraicity criteria for the series counting weighted quadrant walks, Publ. Math. Besançon, Algèbre Théorie Nombres, Volume 2019 (2019) no. 1, pp. 41-80
[46] Galois groups of difference equations of order two on elliptic curves, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 11 (2015), 003, 23 pages | DOI | MR
[47] An algorithm to compute Liouvillian solutions of prime order linear difference-differential equations, J. Symb. Comput., Volume 45 (2010) no. 3, pp. 306-323 | DOI | MR
[48] Liouvillian solutions of linear difference-differential equations, J. Symb. Comput., Volume 45 (2010) no. 3, pp. 287-305 | DOI | MR
[49] Completeness in partial differential algebraic geometry, J. Algebra, Volume 420 (2014), pp. 350-372 | DOI | MR
[50] Parameterized Picard-Vessiot extensions and Atiyah extensions, Adv. Math., Volume 238 (2013), pp. 322-411 | DOI | MR
[51] A bound for orders in differential Nullstellensatz, J. Algebra, Volume 322 (2009) no. 11, pp. 3852-3877 | DOI | MR
[52] Isomonodromic differential equations and differential categories, J. Math. Pures Appl., Volume 102 (2014) no. 1, pp. 48-78 | DOI | MR
[53] Calculating differential Galois groups of parametrized differential equations, with applications to hypertranscendence, Math. Ann., Volume 368 (2017) no. 1-2, pp. 587-632 | DOI | MR
[54] Tannakian formalism over fields with operators, Int. Math. Res. Not. (2013) no. 24, pp. 5571-5622 | MR
[55] Relative D-groups and differential Galois theory in several derivations, Trans. Am. Math. Soc., Volume 367 (2015) no. 11, pp. 7613-7638 | DOI | MR
[56] On the model companion of partial differential fields with an automorphism, Isr. J. Math., Volume 212 (2016) no. 1, pp. 419-442 | DOI | MR
[57] On parameterized differential Galois extensions, J. Pure Appl. Algebra, Volume 220 (2016) no. 7, pp. 2549-2563 | DOI | MR
[58] Some definable Galois theory and examples, Bull. Symb. Log., Volume 23 (2017) no. 2, pp. 145-159 | DOI | MR | Zbl
[59] Transforming linear functional systems into fuzzy integrable systems, J. Symb. Comput., Volume 47 (2012) no. 6, pp. 711-732 | DOI | MR
[60] On the parameterized differential inverse Galois problem over , J. Algebra, Volume 428 (2015), pp. 43-53 | DOI | MR
[61] On complex singularity analysis for linear partial -difference-differential equations using nonlinear differential equations, J. Dyn. Control Syst., Volume 19 (2013) no. 1, pp. 69-93 | DOI | MR
[62] A categorical approach to Picard–Vessiot theory, Theory Appl. Categ., Volume 32 (2017), pp. 488-525 | MR | Zbl
[63] Zariski closures of reductive linear differential algebraic groups, Adv. Math., Volume 227 (2011) no. 3, pp. 1195-1224 | DOI | MR
[64] Extensions of differential representations of and tori, J. Inst. Math. Jussieu, Volume 12 (2013) no. 1, pp. 199-224 | DOI | MR
[65] Unipotent differential algebraic groups as parameterized differential Galois groups, J. Inst. Math. Jussieu, Volume 13 (2014) no. 4, pp. 671-700 | DOI | MR
[66] Some applications of parameterized Picard-Vessiot theory, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 80 (2016) no. 1, pp. 177-200 | DOI | MR
[67] Monodromy groups of parameterized linear differential equations with regular singularities, Bull. Lond. Math. Soc., Volume 44 (2012) no. 5, pp. 913-930 | DOI | MR
[68] Projective isomonodromy and Galois groups, Proc. Am. Math. Soc., Volume 141 (2013) no. 2, pp. 605-617 | DOI | MR
[69] Picard-Vessiot theory and integrability, J. Geom. Phys., Volume 87 (2015), pp. 314-343 | DOI | MR
[70] On a general difference Galois theory. I, Ann. Inst. Fourier, Volume 59 (2009) no. 7, pp. 2709-2732 | MR
[71] Hypertranscedance de fonctions de Mahler du premier ordre, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 17-18, pp. 943-946 | DOI | MR
[72] Differential transcendency of a formal Laurent series satisfying a rational linear -difference equation, Funkc. Ekvacioj, Volume 57 (2014) no. 3, pp. 477-488 | DOI | MR
[73] Tannakian approach to linear differential algebraic groups, Transform. Groups, Volume 13 (2008) no. 2, pp. 413-446 | DOI | MR
[74] Differential Tannakian categories, J. Algebra, Volume 321 (2009) no. 10, pp. 3043-3062 | DOI | MR
[75] Tannakian categories, linear differential algebraic groups, and parametrized linear differential equations, Transform. Groups, Volume 14 (2009) no. 1, pp. 195-223 | DOI | MR
[76] Difference integrability conditions for parameterized linear difference and differential equations, Adv. Appl. Math., Volume 53 (2014), pp. 61-71 | DOI | MR
[77] Tannakian categories with semigroup actions, Can. J. Math., Volume 69 (2017) no. 3, pp. 687-720
[78] On -Picard-Vessiot extensions, Commun. Algebra, Volume 39 (2011) no. 4, pp. 1242-1249 | DOI | MR
[79] Linear algebraic groups as parameterized Picard-Vessiot Galois groups, J. Algebra, Volume 373 (2013), pp. 153-161 | DOI | MR
[80] Twisted Galois stratification, Nagoya Math. J., Volume 222 (2016) no. 1, pp. 1-60 | DOI | MR
[81] Splitting fields and general differential Galois theory, Mat. Sb., Volume 201 (2010) no. 9, pp. 77-110 | DOI | MR
[82] On the definition of the Galois groupoid, Differential equations and singularities (Astérisque), Volume 323, Société Mathématique de France, 2009, pp. 441-452 | MR | Zbl
[83] A Chevalley theorem for difference equations, Math. Ann., Volume 354 (2012) no. 4, pp. 1369-1396 | DOI | MR
[84] Existence of -parameterized Picard-Vessiot extensions over fields with algebraically closed constants, J. Algebra, Volume 361 (2012), pp. 163-171 | DOI | MR
Cited by Sources: