Action of an endomorphism on (the solutions of) a linear differential equation
Publications mathématiques de Besançon. Algèbre et théorie des nombres, no. 1 (2019), pp. 21-39.

The purpose of this survey is to provide the reader with a user friendly introduction to the two articles [8] and [9], which give a Galoisian description of the action of an endomorphism of a differential field (K,) on the solutions of a linear differential equation defined over (K,). After having introduced the theory, we give some concrete examples.

Le but de ce survol est de présenter d’une façon accessible le contenu des articles [8] et [9], qui donnent une description galoisienne de l’action d’un endomorphisme d’un corps différentiel (K,) sur les solutions d’une équation différentielle linéaire à coefficients dans (K,). Après une présentation de la théorie nous donnons quelques exemples d’applications.

Received:
Published online:
DOI: 10.5802/pmb.28
Classification: 12H10, 12H20, 34M15
Keywords: Differential Galois theory, discrete parameter, difference algebra
Di Vizio, Lucia 1

1 Laboratoire de Mathématiques, UVSQ, 45 avenue des États-Unis 78035 Versailles cedex, France
@article{PMB_2019___1_21_0,
     author = {Di Vizio, Lucia},
     title = {Action of an endomorphism on (the solutions of) a linear differential equation},
     journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres},
     pages = {21--39},
     publisher = {Presses universitaires de Franche-Comt\'e},
     number = {1},
     year = {2019},
     doi = {10.5802/pmb.28},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/pmb.28/}
}
TY  - JOUR
AU  - Di Vizio, Lucia
TI  - Action of an endomorphism on (the solutions of) a linear differential equation
JO  - Publications mathématiques de Besançon. Algèbre et théorie des nombres
PY  - 2019
SP  - 21
EP  - 39
IS  - 1
PB  - Presses universitaires de Franche-Comté
UR  - http://www.numdam.org/articles/10.5802/pmb.28/
DO  - 10.5802/pmb.28
LA  - en
ID  - PMB_2019___1_21_0
ER  - 
%0 Journal Article
%A Di Vizio, Lucia
%T Action of an endomorphism on (the solutions of) a linear differential equation
%J Publications mathématiques de Besançon. Algèbre et théorie des nombres
%D 2019
%P 21-39
%N 1
%I Presses universitaires de Franche-Comté
%U http://www.numdam.org/articles/10.5802/pmb.28/
%R 10.5802/pmb.28
%G en
%F PMB_2019___1_21_0
Di Vizio, Lucia. Action of an endomorphism on (the solutions of) a linear differential equation. Publications mathématiques de Besançon. Algèbre et théorie des nombres, no. 1 (2019), pp. 21-39. doi : 10.5802/pmb.28. http://www.numdam.org/articles/10.5802/pmb.28/

[1] Beukers, Frits Differential Galois theory, From number theory to physics (Les Houches, 1989), Springer, 1992, pp. 413-439 | Zbl

[2] Cassidy, Phyllis J.; Singer, Michael F. Galois Theory of Parameterized Differential Equations and Linear Differential Algebraic Groups, Differential Equations and Quantum Groups (IRMA Lectures in Mathematics and Theoretical Physics), Volume 9, European Mathematical Society, 2007, pp. 113-157 | Zbl

[3] Chatzidakis, Zoé; Hrushovski, Ehud; Peterzil, Yaʼacov Model theory of difference fields. II. Periodic ideals and the trichotomy in all characteristics, Proc. Lond. Math. Soc., Volume 85 (2002) no. 2, pp. 257-311 | DOI | MR

[4] Cohn, Richard M. Difference algebra, Interscience Publishers, 1965, xiv+355 pages | MR | Zbl

[5] Crespo, Teresa; Hajto, Zbigniew Algebraic groups and differential Galois theory, Graduate Studies in Mathematics, 122, American Mathematical Society, 2011, xiv+225 pages

[6] Di Vizio, Lucia Approche galoisienne de la transcendance différentielle, Transendance et irrationalité (SMF Journée Annuelle), Société Mathématique de France, 2012, pp. 1-20 | Zbl

[7] Di Vizio, Lucia; Hardouin, Charlotte Descent for differential Galois theory of difference equations: confluence and q-dependence, Pac. J. Math., Volume 256 (2012) no. 1, pp. 79-104

[8] Di Vizio, Lucia; Hardouin, Charlotte; Wibmer, Michael Difference Galois theory of linear differential equations, Adv. Math., Volume 260 (2014), pp. 1-58 | Zbl

[9] Di Vizio, Lucia; Hardouin, Charlotte; Wibmer, Michael Difference algebraic relations among solutions of linear differential equations, J. Inst. Math. Jussieu, Volume 16 (2017) no. 1, pp. 59-119 | DOI | MR

[10] Dwork, Bernard; Gerotto, Giovanni; Sullivan, Francis J. An introduction to G-functions, Annals of Mathematics Studies, 133, Princeton University Press, 1994

[11] Hardouin, Charlotte Galoisian approach to differential transcendence, Galois theories of linear difference equations: an introduction (Mathematical Surveys and Monographs), Volume 211, American Mathematical Society, 2016, pp. 43-102 | Zbl

[12] Hardouin, Charlotte; Singer, Michael F. Differential Galois theory of linear difference equations, Math. Ann., Volume 342 (2008) no. 2, pp. 333-377

[13] Kolchin, Ellis R. Differential algebra and algebraic groups, Pure and Applied Mathematics, 54, Academic Press Inc., 1973, xviii+446 pages | MR | Zbl

[14] Kowalski, Piotr; Pillay, Anand On algebraic σ-groups, Trans. Am. Math. Soc., Volume 359 (2007) no. 3, pp. 1325-1337

[15] Landesman, Peter Generalized differential Galois theory, Trans. Am. Math. Soc., Volume 360 (2008) no. 8, pp. 4441-4495

[16] Levin, Alexander Difference algebra, Algebra and Applications, 8, Springer, 2008

[17] Magid, Andy R. Lectures on differential Galois theory, University Lecture Series, 7, American Mathematical Society, 1994

[18] Ovchinnikov, Alexey; Wibmer, Michael σ-Galois theory of linear difference equations, Int. Math. Res. Not. (2015) no. 12, pp. 3962-4018

[19] Praagman, C. The formal classification of linear difference operators, Indag. Math., Volume 45 (1983) no. 2, pp. 249-261 | Zbl

[20] van der Put, Marius; Singer, Michael F. Galois theory of linear differential equations, Springer, 2003, viii+180 pages

[21] Roques, Julien La théorie de Galois différentielle, Gaz. Math., Soc. Math. Fr. (2017) no. 152, pp. 59-63 | Zbl

[22] Singer, Michael F. Introduction to the Galois theory of linear differential equations, Algebraic theory of differential equations (London Mathematical Society Lecture Note Series), Volume 357, Cambridge University Press, 2009, pp. 1-82

[23] Wibmer, Michael A Chevalley theorem for difference equations, Math. Ann., Volume 354 (2012) no. 4, pp. 1369-1396 | DOI | MR

[24] Antieau, Benjamin; Ovchinnikov, Alexey; Trushin, Dmitry Galois theory of difference equations with periodic parameters, Commun. Algebra, Volume 42 (2014) no. 9, pp. 3902-3943 | DOI | MR

[25] Arreche, Carlos E. A Galois-theoretic proof of the differential transcendence of the incomplete Gamma function, J. Algebra, Volume 389 (2013), pp. 119-127 | DOI | MR

[26] Arreche, Carlos E. Computation of the unipotent radical of the differential Galois group for a parameterized second-order linear differential equation, Adv. Appl. Math., Volume 57 (2014), pp. 44-59 | DOI | MR

[27] Arreche, Carlos E. On the computation of the parameterized differential Galois group for a second-order linear differential equation with differential parameters, J. Symb. Comput., Volume 75 (2016), pp. 25-55 | DOI | MR

[28] Arreche, Carlos E. Computation of the difference-differential Galois group and differential relations among solutions for a second-order linear difference equation, Commun. Contemp. Math., Volume 19 (2017) no. 6, 1650056, 42 pages | DOI | MR | Zbl

[29] Arreche, Carlos E.; Singer, Michael F. Galois groups for integrable and projectively integrable linear difference equations, J. Algebra, Volume 480 (2017), pp. 423-449 | DOI | MR

[30] Bachmayr, Annette; Wibmer, Michael Torsors for Difference Algebraic Groups (2016) (https://arxiv.org/abs/1607.07035)

[31] Bertrand, Daniel Théories de Galois différentielles et transcendance, Ann. Inst. Fourier, Volume 59 (2009) no. 7, pp. 2773-2803 | MR

[32] Blázquez-Sanz, David; Muñoz, Weimar Generalized linear cellular automata in groups and difference Galois theory, J. Difference Equ. Appl., Volume 21 (2015) no. 2, pp. 127-154 | DOI | MR | Zbl

[33] Casale, Guy Irréductibilité de la première équation de Painlevé, C. R. Math. Acad. Sci. Paris, Volume 343 (2006) no. 2, pp. 95-98 | DOI | MR

[34] Casale, Guy Le groupoïde de Galois de P 1 et son irréductibilité, Comment. Math. Helv., Volume 83 (2008) no. 3, pp. 471-519 | DOI | MR

[35] Casale, Guy; Roques, Julien Non-integrability by discrete quadratures, J. Reine Angew. Math., Volume 687 (2014), pp. 87-112 | DOI | MR

[36] Chen, Shaoshi; Chyzak, Frédéric; Feng, Ruyong; Fu, Guofeng; Li, Ziming On the existence of telescopers for mixed hypergeometric terms, J. Symb. Comput., Volume 68 (2015), pp. 1-26 | DOI | MR

[37] Chen, Shaoshi; Singer, Michael F. Residues and telescopers for bivariate rational functions, Adv. Appl. Math., Volume 49 (2012) no. 2, pp. 111-133 | DOI | MR

[38] Crespo, Teresa; Hajto, Zbigniew; van der Put, Marius Real and p-adic Picard-Vessiot fields, Math. Ann., Volume 365 (2016) no. 1-2, pp. 93-103 | DOI | MR

[39] Di Vizio, Lucia; Hardouin, Charlotte Courbures, groupes de Galois génériques et D-groupoïde de Galois d’un système aux q-différences, C. R. Math. Acad. Sci. Paris, Volume 348 (2010) no. 17-18, pp. 951-954 | DOI | MR

[40] Dreyfus, Thomas Computing the Galois group of some parameterized linear differential equation of order two, Proc. Am. Math. Soc., Volume 142 (2014) no. 4, pp. 1193-1207 | DOI | MR

[41] Dreyfus, Thomas A density theorem in parametrized differential Galois theory, Pac. J. Math., Volume 271 (2014) no. 1, pp. 87-141 | DOI | MR

[42] Dreyfus, Thomas; Hardouin, Charlotte; Roques, Julien Hypertranscendence of solutions of Mahler equations (2015) (https://arxiv.org/abs/1507.03361)

[43] Dreyfus, Thomas; Hardouin, Charlotte; Roques, Julien Functional relations of solutions of q-difference equations (2016) (https://arxiv.org/abs/1603.06771)

[44] Dreyfus, Thomas; Hardouin, Charlotte; Roques, Julien; Singer, Michael F. Walks in the quarter plane, genus zero case (2017) (https://arxiv.org/abs/1710.02848)

[45] Dreyfus, Thomas; Raschel, Kilian Differential transcendence & algebraicity criteria for the series counting weighted quadrant walks, Publ. Math. Besançon, Algèbre Théorie Nombres, Volume 2019 (2019) no. 1, pp. 41-80

[46] Dreyfus, Thomas; Roques, Julien Galois groups of difference equations of order two on elliptic curves, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 11 (2015), 003, 23 pages | DOI | MR

[47] Feng, Ruyong; Singer, Michael F.; Wu, Min An algorithm to compute Liouvillian solutions of prime order linear difference-differential equations, J. Symb. Comput., Volume 45 (2010) no. 3, pp. 306-323 | DOI | MR

[48] Feng, Ruyong; Singer, Michael F.; Wu, Min Liouvillian solutions of linear difference-differential equations, J. Symb. Comput., Volume 45 (2010) no. 3, pp. 287-305 | DOI | MR

[49] Freitag, James Completeness in partial differential algebraic geometry, J. Algebra, Volume 420 (2014), pp. 350-372 | DOI | MR

[50] Gillet, Henri; Gorchinskiy, Sergey; Ovchinnikov, Alexey Parameterized Picard-Vessiot extensions and Atiyah extensions, Adv. Math., Volume 238 (2013), pp. 322-411 | DOI | MR

[51] Golubitsky, Oleg; Kondratieva, Marina; Ovchinnikov, Alexey; Szanto, Agnes A bound for orders in differential Nullstellensatz, J. Algebra, Volume 322 (2009) no. 11, pp. 3852-3877 | DOI | MR

[52] Gorchinskiy, Sergey; Ovchinnikov, Alexey Isomonodromic differential equations and differential categories, J. Math. Pures Appl., Volume 102 (2014) no. 1, pp. 48-78 | DOI | MR

[53] Hardouin, Charlotte; Minchenko, Andrey; Ovchinnikov, Alexey Calculating differential Galois groups of parametrized differential equations, with applications to hypertranscendence, Math. Ann., Volume 368 (2017) no. 1-2, pp. 587-632 | DOI | MR

[54] Kamensky, Moshe Tannakian formalism over fields with operators, Int. Math. Res. Not. (2013) no. 24, pp. 5571-5622 | MR

[55] León Sánchez, Omar Relative D-groups and differential Galois theory in several derivations, Trans. Am. Math. Soc., Volume 367 (2015) no. 11, pp. 7613-7638 | DOI | MR

[56] León Sánchez, Omar On the model companion of partial differential fields with an automorphism, Isr. J. Math., Volume 212 (2016) no. 1, pp. 419-442 | DOI | MR

[57] León Sánchez, Omar; Nagloo, Joel On parameterized differential Galois extensions, J. Pure Appl. Algebra, Volume 220 (2016) no. 7, pp. 2549-2563 | DOI | MR

[58] León Sánchez, Omar; Pillay, Anand Some definable Galois theory and examples, Bull. Symb. Log., Volume 23 (2017) no. 2, pp. 145-159 | DOI | MR | Zbl

[59] Li, Ziming; Wu, Min Transforming linear functional systems into fuzzy integrable systems, J. Symb. Comput., Volume 47 (2012) no. 6, pp. 711-732 | DOI | MR

[60] Maier, Annette On the parameterized differential inverse Galois problem over k((t))(x), J. Algebra, Volume 428 (2015), pp. 43-53 | DOI | MR

[61] Malek, Stéphane On complex singularity analysis for linear partial q-difference-differential equations using nonlinear differential equations, J. Dyn. Control Syst., Volume 19 (2013) no. 1, pp. 69-93 | DOI | MR

[62] Maurischat, Andreas A categorical approach to Picard–Vessiot theory, Theory Appl. Categ., Volume 32 (2017), pp. 488-525 | MR | Zbl

[63] Minchenko, Andrey; Ovchinnikov, Alexey Zariski closures of reductive linear differential algebraic groups, Adv. Math., Volume 227 (2011) no. 3, pp. 1195-1224 | DOI | MR

[64] Minchenko, Andrey; Ovchinnikov, Alexey Extensions of differential representations of SL 2 and tori, J. Inst. Math. Jussieu, Volume 12 (2013) no. 1, pp. 199-224 | DOI | MR

[65] Minchenko, Andrey; Ovchinnikov, Alexey; Singer, Michael F. Unipotent differential algebraic groups as parameterized differential Galois groups, J. Inst. Math. Jussieu, Volume 13 (2014) no. 4, pp. 671-700 | DOI | MR

[66] Mitchi, K. Some applications of parameterized Picard-Vessiot theory, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 80 (2016) no. 1, pp. 177-200 | DOI | MR

[67] Mitschi, Claude; Singer, Michael F. Monodromy groups of parameterized linear differential equations with regular singularities, Bull. Lond. Math. Soc., Volume 44 (2012) no. 5, pp. 913-930 | DOI | MR

[68] Mitschi, Claude; Singer, Michael F. Projective isomonodromy and Galois groups, Proc. Am. Math. Soc., Volume 141 (2013) no. 2, pp. 605-617 | DOI | MR

[69] Morales-Ruiz, Juan J. Picard-Vessiot theory and integrability, J. Geom. Phys., Volume 87 (2015), pp. 314-343 | DOI | MR

[70] Morikawa, Shuji On a general difference Galois theory. I, Ann. Inst. Fourier, Volume 59 (2009) no. 7, pp. 2709-2732 | MR

[71] Nguyen, Pierre Hypertranscedance de fonctions de Mahler du premier ordre, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 17-18, pp. 943-946 | DOI | MR

[72] Ogawara, Hiroshi Differential transcendency of a formal Laurent series satisfying a rational linear q-difference equation, Funkc. Ekvacioj, Volume 57 (2014) no. 3, pp. 477-488 | DOI | MR

[73] Ovchinnikov, Alexey Tannakian approach to linear differential algebraic groups, Transform. Groups, Volume 13 (2008) no. 2, pp. 413-446 | DOI | MR

[74] Ovchinnikov, Alexey Differential Tannakian categories, J. Algebra, Volume 321 (2009) no. 10, pp. 3043-3062 | DOI | MR

[75] Ovchinnikov, Alexey Tannakian categories, linear differential algebraic groups, and parametrized linear differential equations, Transform. Groups, Volume 14 (2009) no. 1, pp. 195-223 | DOI | MR

[76] Ovchinnikov, Alexey Difference integrability conditions for parameterized linear difference and differential equations, Adv. Appl. Math., Volume 53 (2014), pp. 61-71 | DOI | MR

[77] Ovchinnikov, Alexey; Wibmer, Michael Tannakian categories with semigroup actions, Can. J. Math., Volume 69 (2017) no. 3, pp. 687-720

[78] Peón Nieto, Ana On σδ-Picard-Vessiot extensions, Commun. Algebra, Volume 39 (2011) no. 4, pp. 1242-1249 | DOI | MR

[79] Singer, Michael F. Linear algebraic groups as parameterized Picard-Vessiot Galois groups, J. Algebra, Volume 373 (2013), pp. 153-161 | DOI | MR

[80] Tomašić, Ivan Twisted Galois stratification, Nagoya Math. J., Volume 222 (2016) no. 1, pp. 1-60 | DOI | MR

[81] Trushin, Dmitry Splitting fields and general differential Galois theory, Mat. Sb., Volume 201 (2010) no. 9, pp. 77-110 | DOI | MR

[82] Umemura, Hiroshi On the definition of the Galois groupoid, Differential equations and singularities (Astérisque), Volume 323, Société Mathématique de France, 2009, pp. 441-452 | MR | Zbl

[83] Wibmer, Michael A Chevalley theorem for difference equations, Math. Ann., Volume 354 (2012) no. 4, pp. 1369-1396 | DOI | MR

[84] Wibmer, Michael Existence of -parameterized Picard-Vessiot extensions over fields with algebraically closed constants, J. Algebra, Volume 361 (2012), pp. 163-171 | DOI | MR

Cited by Sources: