2 Inégalités de Morse d'après E. Witten
Publications du Département de mathématiques (Lyon), no. 3B (1984), pp. 15-20.
@article{PDML_1984___3B_A2_0,
     author = {Combet, Edmond},
     title = {2 {In\'egalit\'es} de {Morse} d'apr\`es {E.} {Witten}},
     journal = {Publications du D\'epartement de math\'ematiques (Lyon)},
     pages = {15--20},
     publisher = {Universit\'e Claude Bernard - Lyon 1},
     number = {3B},
     year = {1984},
     zbl = {0545.58025},
     mrnumber = {755013},
     language = {fr},
     url = {http://www.numdam.org/item/PDML_1984___3B_A2_0/}
}
TY  - JOUR
AU  - Combet, Edmond
TI  - 2 Inégalités de Morse d'après E. Witten
JO  - Publications du Département de mathématiques (Lyon)
PY  - 1984
DA  - 1984///
SP  - 15
EP  - 20
IS  - 3B
PB  - Université Claude Bernard - Lyon 1
UR  - http://www.numdam.org/item/PDML_1984___3B_A2_0/
UR  - https://zbmath.org/?q=an%3A0545.58025
UR  - https://www.ams.org/mathscinet-getitem?mr=755013
LA  - fr
ID  - PDML_1984___3B_A2_0
ER  - 
Combet, E. 2 Inégalités de Morse d'après E. Witten. Publications du Département de mathématiques (Lyon), no. 3B (1984), pp. 15-20. http://www.numdam.org/item/PDML_1984___3B_A2_0/

[1] L. Alvarez-Gaume, Supersymmetry and the Atiyah-Singer Index theorem, Commun. Math. Phys. 90, 161-173 (1983). | MR 714431 | Zbl 0528.58034

[2] E.M. Harrel, On the rate of Asymptotic Eigenvalue Degeneracy, Commun. Math. Phys. 60, 73-95 (1978). | MR 486764 | Zbl 0395.34023

[3] G. Jona-Lasinio, F. Martinelli and E. Scoppola, New approach to the semi-classical limit of quantum mechanics I. Commun. Math. Phys. 80, 223-254 (1981). | MR 623159 | Zbl 0483.60094

[4] R. Jackiw, Quantum meaning of classical field theory, Rev. of Mod. Physics 49, 681-705 (1977). | MR 503137

[5] M. Reed / B. Simon, Analysis of operators IV, Academic Press 1978.

[6] E. Witten, supersymmetry and Morse theory. J. Differential Geometry 17 (1982) 661-692. | MR 683171 | Zbl 0499.53056

[7] E. Witten, Constraints on supersymmetry breaking, Nuclear Physics, B 202 253-316 (1982). | MR 668987