@book{MSMF_1998_2_75__1_0, author = {Cheverry, Christophe}, title = {Syst\`emes de lois de conservation et stabilit\'e {BV}}, series = {M\'emoires de la Soci\'et\'e Math\'ematique de France}, publisher = {Soci\'et\'e math\'ematique de France}, number = {75}, year = {1998}, doi = {10.24033/msmf.388}, mrnumber = {2000b:35159}, zbl = {0926.35086}, language = {fr}, url = {http://www.numdam.org/item/MSMF_1998_2_75__1_0/} }
TY - BOOK AU - Cheverry, Christophe TI - Systèmes de lois de conservation et stabilité BV T3 - Mémoires de la Société Mathématique de France PY - 1998 IS - 75 PB - Société mathématique de France UR - http://www.numdam.org/item/MSMF_1998_2_75__1_0/ DO - 10.24033/msmf.388 LA - fr ID - MSMF_1998_2_75__1_0 ER -
Cheverry, Christophe. Systèmes de lois de conservation et stabilité BV. Mémoires de la Société Mathématique de France, Serie 2, no. 75 (1998), 116 p. doi : 10.24033/msmf.388. http://numdam.org/item/MSMF_1998_2_75__1_0/
[B1] Lectures notes on systems of conservation laws, S.I.S.S.A, Trieste, 1996.
,[B2] The Semigroup Approach to Systems of conservation laws, S.I.S.S.A, Via Beirut 4, Trieste, 135/95/M. 1994.
,[CCS] Positively invariant regions for systems of nonlinear diffusion equations, Indiana Math., 26 (1977), 373-392. | Zbl | MR
, , ,[Ch1] Justification de l'optique géométrique nonlinéaire pour un système de lois de conservation, Duke Mathematical Journal, 87, (1997), 213-263. | Zbl | MR
,[Ch2] The modulation equations of non linear geometric optics, Comm. in Part. Diff. Eq, 21 (1996), 1119-1140. | Zbl | MR
,[Ch3] About the Cauchy problem for a system of conservation laws, Geometrical optics and related topics. Progress in non linear differential equations and their applications. Birhäuser. To appear. | Zbl
,[Ch4] Optique géométrique oscillante en présence d'un grand choc, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze. À paraître. | Zbl | Numdam
,[G] Solutions in the large for non linear hyperbolic systems, Commun. Pure. Applied. Math., 28 (1970), 697-715 | Zbl
,[GL] Decay of solutions of systems of nonlinear hyperbolic conservation laws, Memoirs Amer. Math. Soc., 101 (1970). | Zbl | MR
, ,[H] Hyperbolic waves and nonlinear geometric acoustics, Transactions of the Sixth Army Conference on Applied Mathematics and Computing, 2 (1989), 527-569. | Zbl | MR
,[J] Formation of Singularities in One-Dimensional Nonlinear Wave Propagation, Commun. Pure. Applied. Math., 27 (1974), 377-405. | Zbl | MR
,[JMR1] Resonant one dimensional nonlinear geometric optics, J. Funct. Anal., 114 (1993), 106-231. | Zbl | MR
, , ,[JMR2] A non linear instability for 3 × 3 systems of conservation laws, Comm. Math. Phys., 162 (1994), 47-59. | Zbl | MR
, , ,[La] Hyperbolic systems of conservation laws II, Comm. Pure. Appl. Math., 10 (1957), 537-566. | Zbl | MR
,[RY1] Sup-norm Stability for Glimm's Scheme, Comm. Pure. Appl. Math., 46 (1993), 903-948. | Zbl | MR
,[RY2] The large time stability of sound waves, Commun. Math. Phys., 179 (1996), 417-466. | Zbl | MR
, ,[Sc1] Glimm's scheme for systems with almost-planar interactions, Comm. in Part. Diff. Eq., 16 (1991), 1423-1440. | Zbl | MR
,[Sc2] The essence of Glimm's scheme, Preprint. | MR
,[Sc3] Resonant nonlinear geometrical optics for weak solutions of conservation laws, J. Diff. Eq., 113 (1994), 473-504. | Zbl | MR
,[Se] Domaines invariants pour les systèmes hyperboliques de lois de conservation, J. Diff. Eq., 69 (1987), 46-62. | Zbl | MR
,[TPL] Decay to N-waves of solutions of general systems of nonlinear hyperbolic conservation laws, Comm. in Part. Diff. Eq., 30 (1977), 585-610. | Zbl | MR
,[W] An analysis of front tracking for chromatography, Acta. Appl. Math., 30 (1993), 265-285. | Zbl | MR
,Cited by Sources: