@book{MSMF_1992_2_49__1_0, author = {Ambrosetti, Antonio}, title = {Critical points and nonlinear variational problems}, series = {M\'emoires de la Soci\'et\'e Math\'ematique de France}, publisher = {Soci\'et\'e math\'ematique de France}, number = {49}, year = {1992}, doi = {10.24033/msmf.362}, zbl = {0766.49006}, language = {en}, url = {http://www.numdam.org/item/MSMF_1992_2_49__1_0/} }
TY - BOOK AU - Ambrosetti, Antonio TI - Critical points and nonlinear variational problems T3 - Mémoires de la Société Mathématique de France PY - 1992 IS - 49 PB - Société mathématique de France UR - http://www.numdam.org/item/MSMF_1992_2_49__1_0/ DO - 10.24033/msmf.362 LA - en ID - MSMF_1992_2_49__1_0 ER -
Ambrosetti, Antonio. Critical points and nonlinear variational problems. Mémoires de la Société Mathématique de France, Serie 2, no. 49 (1992), 144 p. doi : 10.24033/msmf.362. http://numdam.org/item/MSMF_1992_2_49__1_0/
[1] Comparaison des solutions d'équations paraboliques et elliptiques par symétrisation. Une méthode nouvelle, C.R.A.S. 303 (1986), 975-978. | Zbl
.- .,[2] A multiplicity result for a class of elliptic boundary value problems Proc. Royal. Soc. Ed. 84, A (1979), 145-151. | Zbl | MR
.- .,[3] Nontrivial solutions for a class of non-resonance problems and applications to nonlinear differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4) 7 (1980), 539-603. | Zbl | MR | Numdam | EuDML
.- .,[4] Esistenza di infinite soluzioni per problemi non lineari in assenza di parametro, Atti Acc. Naz. Lincei, 52 (1972), 660-667. | Zbl | MR
.,[5] A perturbation theorem for superlinear boundary value problems, M.R.C. Tech. Summ. Rep. (1974).
.,[6] Elliptic equations with jumping nonlinearities, J. Math. Phys. Sci. 18-1 (1984), 1-12. | Zbl | MR
.,[7] Remarks on dynamical systems with singular potentials, in Nonlinear Analysis, a trubute in honour of Giovanni Prodi, Quaderni Scuola Norm. Sup. Pisa, (1991), 51-60. | MR
.,[8] The dual variational principle and elliptic problems with discontinuous nonlinearities, Journ. Math. Anal. Appl. 140, 2 (1989), 363-373. | Zbl | MR
.- .,[9] Multiple periodic trajectories in a relativistic gravitational field, in Variational Methods (Ed.H. Berestycki et al.), Birkäuser, (1990), 373-381. | Zbl | MR
.- .,[10] Multiple closed orbits for perturbed Keplerian problems, J. Diff. Equat. to appear. Preliminary note in Rend. Mat. Acc. Lincei, s. 9, v. 2 (1991), 11-15. | Zbl | MR
.- .,[11] Homoclinics for a second order conservative systems, Proc. Conf. in honour of L. Nirenberg, Trento 1990, to appear. | Zbl
.- .,[12] Remarks on the Grad-Shafranov equation, Appl. Math. Lett. 3-3 (1990), 9-11. | Zbl | MR
.- . - .,[13] Critical point with lack of compactness and singular dynamical systems, Ann. Mat. Pura Appl. 149 (1987), 237-259. | Zbl | MR
.- .,[14] Perturbation of Hamiltonian Systems with Keplerian Potentials, Mat. Zeit. 201 (1989), 227-242. Preliminary Note in C. R. Acad. Sci. Paris 307 (1988), 568-571. | Zbl | MR
.- .,[15] Closed orbits with fixed energy for singular Hamiltonian Systems, Archive Rat. Mech. Analysis, 112 (1990), 339-362. | Zbl | MR
.- .,[16] Closed orbits with fixed energy for a class of N-body problems, Annales Inst H. Poincaré Analyse Nonlin, to appear. | Zbl | Numdam
.- .,[17] Symmetry breaking in Hamiltonian Systems, J. Diff. Equat. 67 (1987), 165-184. | Zbl | MR
.- . - .,[18] Periodic solution of a class of Hamiltonian Systems with singularities, Proc. Royal Soc. Edinburgh 114 A (1990), 1-13. | Zbl | MR
.- .,[19] A class of nonlinear Dirichlet with multiple solutions, J. Nonlinear Anal. T.M.A..8-10 (1984), 1145-1150. | Zbl | MR
.- .,[20] Sharp nonuniqueness results for some nonlinear problems, J. Nonlinear Anal. T.M.A. 3 (1979), 635-645. | Zbl | MR
.- .,[21] Remarks on some free boundary problems, Contribution to nonlinear Partial Differential Equations, Pitman (1981), 24-36. | Zbl | MR
.- .,[22] Solution of minimal period for a class of convex Hamiltonian systems, Math. Annalen 255 (1981), 405-421. | Zbl | MR
.- .,[23] On a theorem by Ekeland and Lasry concerning the number of periodic Hamiltonian trajectories, J. Diff. Equat.43 (1982), 249-256. | Zbl | MR
.- .,[24] On the inversion of some differentiable mapping with singularities between Banach spaces, Ann. Mat. Pura Appl. 93 (1972), 231-246. | Zbl | MR
.- .,[25] A primer of Nonlinear Analysis, Cambridge Univ. Press, to appear. | Zbl
.- .,[26] Dual variational methods in critical points theory and applications, J. Funct. Anal. 14 (1973), 349-381. | Zbl | MR
.- .,[27] Superlinear elliptic problems and the dual principle in critical point theory, J. Math. Phys. Sci. 18-4 (1984), 441-451. | Zbl | MR
.- .,[28] A note on the problem , Manus Math. 54 (1986), 373-379. | Zbl | MR
.- .,[29] Existence of steady vortex rings in an ideal fluid, Arch. Rat. Mech. Anal. 108, 2 (1989), 97-109. | Zbl | MR
.- .,[30] Some discontinuous variationals problems, Diff. and Integral. Equa. 1 (1988), 341-349. | Zbl | MR
.- .,[31] Asymptotic behaviour in planar vortex theory, Rend. Mat. Acc. Lincei, s.9-1 (1990), 285-291. | Zbl
.- ,[32] The uniqueness of Hill's spherical vortex, Arch. Rat. Mech. Anal. 2 (1986), 91-119. | Zbl | MR
.- .,[33] A global branch of steady vortex rings, J. Reine Angw. Math. 384 (1988), 1-23. | Zbl | MR
.- .,[34] Topological results on a certain class of functionals and applications, J. Funct. Anal. 41 (1981), 397-427. | Zbl | MR
.,[35] A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc. 267 (1981), 1-32. | Zbl | MR
.- .,[36] On a nonlinear elliptic equation involving the critical Sobolev exponent : the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 253-294. | Zbl | MR
.- .,[37] Morse index of some min-max critical points I. Application to multiplicity results, Comm. Pure Appl. Math. 41 (1988), 1027-1037. | Zbl | MR
.- .,[38] A minimax method for a class of Hamiltonian systems with singular potentials, J. Funct. Anal. 82 (1989), 412-428. | Zbl | MR
.- .,[39] Solutions of the three-body problem via critical points of infinity, Preprint.
.- .,[40] Isoperimetric Inequalities and Applications, Pitman, London (1980). | Zbl | MR
.,[41] A geometrical index for the group S1 and some applications to the research of periodic solutions of O.D.E.'s, Comm. Pure Appl. Math. 34 (1981), 393-432. | Zbl | MR
.,[42] The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rat. Mech. Anal. 114 (1991), 79-93. | Zbl | MR
.- .,[43] Periodic solutions of prescribed energy for a class of Hamiltonian systems with singular potentials, J. Diff. Eq. 82 (1989), 60-70. | Zbl | MR
.- .,[44] Critical point theorems for indefinite functionals, Invent. Math. 52 (1979), 241-273. | Zbl | MR
.- .,[45] Existence of multiple periodic orbits on star-shaped Hamiltonian surfaces, Comm. Pure Appl. Math. (1985), 253-290. | Zbl | MR
.- .- .- .,[46] Nonlinear desingularization in certain free-boundary problems, Comm. Math. Phys. 77 (1980), 149-172. | Zbl | MR
- ,[47] Multiple closed orbits for singular conservative systems via geodesics theory, Rend. Sem. Mat. Univ. Padova, to appear. | Zbl | Numdam
,[48] Multiple closed orbits of fixed energy for gravitational potentials, J. Diff. Eq., to appear. | Zbl
,[49] Multiple homoclinics for autonomous singular potentials, to appear.
,[50] Symmetries and noncollision closed orbits for a planar N-body type problems, J. Nonlin. Anal. T.M.A. 16 (1991), 587-598. | Zbl | MR
- ,[51] Free vibrations for a nonlinear equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math. 33 (1980), 667-684. | Zbl | MR
- - ,[52] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477. | Zbl | MR
- ,[53] Infinite dimensional manifolds and nonlinear eigenvalue problems, Ann. of Math. 82 (1965), 459-477. | Zbl | MR
,[54] Remarks on the number of positive solutions for a class of nonlinear elliptic problems, Diff. & Int. Eq. (to appear). | Zbl
,[55] An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. Poincaré, Anal. Nonlin. 2 (1985), 463-470. | Zbl | MR | Numdam
- - ,[56] Lagrangian systems in presence of singularities, Proc. Am. Math. Soc. 102 (1988), 125-130. | Zbl | MR
- - ,[57] Periodic solutions of Hamiltonian inclusions, J. Diff. Equat. 40 (1981), 1-6. | Zbl | MR
,[58] Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math. 33 (1980), 103-116. | Zbl | MR
- ,[59] Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129. | Zbl | MR
,[60] A remark on the perturbation of critical manifolds, Preprint Peking University.
,[61] Soluzioni positive di problemi con parte nonlienare discontinua e applicazioni a un problema di frontiera libera, Boll. U.M.I. 2 (1983), 321-338. | Zbl | MR
,[62] Topologie et cas limite des injections de Sobolev, C.R. Acad. Sci. Paris 299 (1984), 209-212. | Zbl | MR
,[63] Periodic solutions for a class of planar, singular dynamical systems, J. Math. Pures et Appl. 68 (1989), 109-119. | Zbl | MR
,[64] A class of periodic solutions of the N-body problem, Cel. Mech. and Dyn. Astr. 46 (1989), 177-186. | Zbl | MR
,[65] Periodic solutions for N-body type problems, Annales Inst. H. Poincaré, Analyse Nonlin. 7 (1990), 477-492. | Zbl | MR | Numdam
,[66] A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann. Vol.288 (1990), 133-160. | Zbl | MR
- - ,[67] Homoclinic orbits for a second order Hamiltonian systems possessing superquadratic potentials, Preprint SISSA, Trieste (1980).
- ,[68] Collision and non-collision solutions for a class of Keplerian-like dynamical systems, Preprint SISSA, Trieste (1990).
- ,[69] Counterexamples to some conjectures on the number of solutions of nonlinear equations, Math. Ann. 272 (1985), 421-440. | Zbl | MR
,[70] The G-invariant implicit function theorem in infinite dimension, Proc. Roy. Soc. Edinburgh, 102-A (1986), 211-220. | Zbl | MR
,[71] Periodic solutions of dynamical systems with Newtonian type potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), 467-494. | Zbl | MR | Numdam
- ,[72] Nonconvex minimization problems, Bull. Am. Math. Soc. 1 (1979), 443-474. | Zbl | MR
,[73] Convexity methods in hamiltonian mechanics, Springer, 1990. | Zbl | MR
,[74] Periodic solution with prescribed minimal period for convex autonomous hamiltonian systems, Invent. Math. 81 (1985), 155-188. | Zbl | MR
- ,[75] On the number of closed trajectories for a hamiltonian flow on a convex energy surface, Ann. of Math. 112 (1980), 283-319. | Zbl | MR
- ,[76] A note on the category of free loop space, Proc. A.M.S. 107 (1989), 527-536. | Zbl | MR
- ,[77] A global theory of steady vortex rings in an ideal fluid, Acta Math. 132 (1974), 13-51. | Zbl | MR
- ,[78] Solvability of nonlinear equations and boundary value problems, D. Reidel Publ. Co., Dordrecht (1980). | Zbl | MR
,[79] Resonance for jumping nonlinearities, Comm. P.D.E. 7-3 (1982), 325-342. | Zbl | MR
- ,[80] Symmetry and relates properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243. | Zbl | MR
- - ,[81] Essential critical points of linking type and solutions of minimal period to superquadratic hamiltonian systems, J. Nonlinear Analysis T.M.A., to appear. | Zbl
- ,[82] Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc. 204 (1975), 113-135. | Zbl | MR
,[83] A general mountain pass principle for locating and classifying critcal points, Annales Inst. H. Poincaré, Analyse Nonlineaire, 6 (1989), 321-330. | Zbl | Numdam
,[84] Periodic solutions of a class of singular Hamiltonian systems, J. Nonlinear Analysis T.M.A. 12 (1988), 259-270. | Zbl | MR
,[85] A note on the topological degree at a critical point of mountain-pass type, Proc. Am. Math. Soc. 90 (1984), 309-315. | Zbl | MR
,[86] First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems, Math. Ann. Vol. 288 (1990), 483-503. | Zbl | MR
- ,[87] Periodic solutions on hypersurfaces and a result by C. Viterbo, Inv. Math. 90 (1987), 1-9. | Zbl | MR
- ,[88] Lectures on closed geodesics, Springer, 1978. | Zbl | MR
,[89] Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975), 567-597. | Zbl | MR
- ,[90] Introduction to celestial Mechanics, D. Reidel Publ. Co., Dordrecht, 1967. | Zbl
,[91] Topological Methods in the theory of non-linear integral equations, Pergamon, Oxford, 1965.
,[92] Nonlinear perturbations of linear elliptic problems at resonance, J. Math. Mech. 19 (1970), 609-623. | Zbl | MR
- ,[93] On the number of solutions of a nonlinear Dirichlet problem, J. Math. Anal. Appl. 84 (1981), 282-294. | Zbl | MR
- ,[94] Multiple positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, C.R. Acad. Sci. Paris, to appear. | Zbl
,[95] Introduzione alla meccanica relativistica, Zanichelli, Bologna, 1928.
,[96] Méthode topologique dans les problémes varationelles, Hermann, Paris (1934). | Zbl | JFM
- ,[97] Ljusternik-Schnirelman theory without Palais-Smale condition and singular dynamical systems, Annales Inst. H. Poincaré, Analyse Nonlin.8 (1991), 459-476. | Zbl | MR | Numdam
,[98] Critical point theory and hamiltonian systems, Springer, 1989. | Zbl | MR
- ,[99] Periodic orbits near an equilibrium and a theorem by Alan Weinstein, Comm. Pure Appl. Math. 29 (1976), 727-747. | Zbl | MR
,[100] Regularization of Kepler's problem and the averaging method on a manifold, Comm. Pure Appl. Math. 23 (1970), 609-636. | Zbl | MR
,[101] On the existence of global vortex rings, J. d'Analyse Math. 37 (1980), 208-247. | Zbl | MR
,[102] Variational and topological methods in nonlinear problems, Bull. A.M.S. 4-3 (1981), 267-302. | Zbl | MR
,[103] A family of steady vortex rings, J. Fluid Mech. 57 (1973), 417-431. | Zbl
,[104] Lusternik-Schnirelman theory on Banach manifolds, Topology 5 (1966), 115-132. | Zbl | MR
,[105] A generalized Morse theory, Bull. Amer. Math. Soc. 70 (1964), 165-171. | Zbl | MR
- ,[106] Eigenfunctions of the equations Δu + λf(u) = 0, Soviet Math. 5 (1965), 1408-1411. | Zbl
,[107] Periodic solutions of hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), 157-184. | Zbl | MR
,[108] A variational method for finding periodic solutions of differential equations, Nonlinear Evolution Equations (M.G. Crandall ed.), Academic Press (1978), 225-251. | Zbl | MR
,[109] On a theorem of Hofer and Zehnder, Periodic solutions of hamiltonian systems and related topics (P.H. Rabinowitz et al. ed.), NATO ASI Series C Vol. 209, Reidel Publ. Co., 1986, 245-253. | Zbl | MR
,[110] Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. in Math. 65, A.M.S., Providence, 1986. | Zbl | MR
,[111] Homoclinic orbits for a class of Hamiltonian systems, Proceed. Royal Soc. Edinburgh, Vol.114A (1990), 33-38. | Zbl | MR
,[112] Some results on connecting orbits for a class of Hamiltonian systems, Math. Zeit., to appear. | Zbl
- ,[113] Generalizing the Lusternik-Schnirelman theory of critical points, Comm. Pure Appl. Math. 17 (1964), 307-315. | Zbl | MR
,[114] Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Zeit., to appear. | Zbl
,[115] Dynamical systems with singular potentials : existence and qualitative properties of periodic motions, Ph.D. Thesis, SISSA, Trieste (1991).
,[116] Noncollision periodic solutions to some three- body like problems, Preprint SISSA, Trieste (1990).
- ,[117] Uniqueness of solutions of nonlinear Dirichlet problems, to appear.
,[118] Le probléme de Dirichlet pour les équations elliptiques du second ordre a coefficients discontinuous, Ann. Inst. Fourier, 15 (1965), 189-258. | Zbl | MR | Numdam
,[119] Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems, Manus. Math. 32 (1980), 335-364. | Zbl | MR
,[120] Variational methods, Springer, 1990. | Zbl | MR
,[121] Differential equations with discontinuos nonlinearities, Arch. Rat. Mech. Anal. 63 (1976), 59-75. | Zbl | MR
,[122] A variational method for boundary value problems with discontinuous non-linearities, J. London Math. Soc. 21 (1980), 319-328. | Zbl | MR
- ,[123] Ljusternik-Schnirelmann theory on C1 manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), 119-139. | Zbl | MR | Numdam
,[124] Homoclinic orbits for a singular second order Hamiltonian system, Annales Inst. H. Poincaré, Analyse Non-lineaire, Vol.7 (1990), 427-438. | Zbl | MR | Numdam
,[125] Non-collision solutions for a second order singular Hamiltonian system with weak forces, Preprint (1991).
,[126] Periodic solutions to dynamical systems with Keplerian type potentials, Ph.D. Thesis, SISSA, Trieste (1990).
,[127] Analytical mini-max methods for Hamiltonian break orbits of prescribed energy, J. Math. Anal. Appl. 132 (1988), 1-12. | Zbl
,[128] On a superlinear elliptic equation, Annales Inst H. Poincaré Analyse nonlin. 8 (1991), 43-58. | Zbl | MR | Numdam
,[129] Normal modes for nonlinear hamiltonian systems, Invent. Math. 20 (1973), 45-57. | Zbl | MR
,[130] Periodic orbits for convex hamiltonian systems, Ann. of Math. 108 (1978), 507-518. | Zbl | MR
,[131] Existence and asymptotic behaviour in planar vortex theory, to appear.
,Cited by Sources: