An unconditionally stable finite element-finite volume pressure correction scheme for the drift-flux model
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 44 (2010) no. 2, p. 251-287
We present in this paper a pressure correction scheme for the drift-flux model combining finite element and finite volume discretizations, which is shown to enjoy essential stability features of the continuous problem: the scheme is conservative, the unknowns are kept within their physical bounds and, in the homogeneous case (i.e. when the drift velocity vanishes), the discrete entropy of the system decreases; in addition, when using for the drift velocity a closure law which takes the form of a Darcy-like relation, the drift term becomes dissipative. Finally, the present algorithm preserves a constant pressure and a constant velocity through moving interfaces between phases. To ensure the stability as well as to obtain this latter property, a key ingredient is to couple the mass balance and the transport equation for the dispersed phase in an original pressure correction step. The existence of a solution to each step of the algorithm is proven; in particular, the existence of a solution to the pressure correction step is derived as a consequence of a more general existence result for discrete problems associated to the drift-flux model. Numerical tests show a near-first-order convergence rate for the scheme, both in time and space, and confirm its stability.
DOI : https://doi.org/10.1051/m2an/2010002
Classification:  65N12,  65N30,  76N10,  76T05,  76M25
@article{M2AN_2010__44_2_251_0,
     author = {Gastaldo, Laura and Herbin, Rapha\`ele and Latch\'e, Jean-Claude},
     title = {An unconditionally stable finite element-finite volume pressure correction scheme for the drift-flux model},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {44},
     number = {2},
     year = {2010},
     pages = {251-287},
     doi = {10.1051/m2an/2010002},
     zbl = {pre05692906},
     mrnumber = {2655950},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2010__44_2_251_0}
}
Gastaldo, Laura; Herbin, Raphaèle; Latché, Jean-Claude. An unconditionally stable finite element-finite volume pressure correction scheme for the drift-flux model. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 44 (2010) no. 2, pp. 251-287. doi : 10.1051/m2an/2010002. http://www.numdam.org/item/M2AN_2010__44_2_251_0/

[1] G. Ansanay-Alex, F. Babik, J.-C. Latché and D. Vola, An L2-stable approximation of the Navier-Stokes advection operator for low-order non-conforming finite elements. IJNMF (to appear).

[2] M. Baudin, Ch. Berthon, F. Coquel, R. Masson and Q.H. Tran, A relaxation method for two-phase flow models with hydrodynamic closure law. Numer. Math. 99 (2005) 411-440. | Zbl 1204.76025

[3] M. Baudin, F. Coquel and Q.-H. Tran, A semi-implicit relaxation scheme for modeling two-phase flow in a pipeline. SIAM J. Sci. Comput. 27 (2005) 914-936 (electronic). | Zbl 1130.76384

[4] S. Becker, A. Sokolichin and G. Eigenberger, Gas-liquid flow in bubble columns and loop reactors: Part II. Comparison of detailed experiments and flow simulations. Chem. Eng. Sci. 49 (1994) 5747-5762.

[5] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991). | Zbl 0788.73002

[6] G. Chanteperdrix, Modélisation et simulation numérique d'écoulements diphasiques à interface libre. Application à l'étude des mouvements de liquides dans les réservoirs de véhicules spatiaux. Energétique et dynamique des fluides, École Nationale Supérieure de l'Aéronautique et de l'Espace, France (2004).

[7] P.G. Ciarlet, Finite elements methods - Basic error estimates for elliptic problems, in Handbook of Numerical Analysis II, P. Ciarlet and J.L. Lions Eds., North Holland (1991) 17-351. | Zbl 0875.65086

[8] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. Revue Française d'Automatique, Informatique et Recherche Opérationnelle (R.A.I.R.O.) 3 (1973) 33-75. | Numdam | Zbl 0302.65087

[9] K. Deimling, Nonlinear Functional Analysis. Springer, New York, USA (1980). | Zbl 0559.47040

[10] S. Evje and K.K. Fjelde, Hybrid flux-splitting schemes for a two-phase flow model. J. Comput. Phys. 175 (2002) 674-701. | Zbl 1197.76132

[11] S. Evje and K.K. Fjelde, On a rough AUSM scheme for a one-dimensional two-phase model. Comput. Fluids 32 (2003) 1497-1530. | Zbl 1128.76337

[12] R. Eymard, T. Gallouët, M. Ghilani and R. Herbin, Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18 (1998) 563-594. | Zbl 0973.65078

[13] R. Eymard, T Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis I, P. Ciarlet and J.L. Lions Eds., North Holland (2000) 713-1020. | Zbl 0981.65095

[14] T. Flåtten and S.T. Munkejord, The approximate Riemann solver of Roe applied to a drift-flux two-phase flow model. ESAIM: M2AN 40 (2006) 735-764. | Numdam | Zbl 1123.76038

[15] T. Gallouet, J.-M. Hérard and N. Seguin, A hybrid scheme to compute contact discontinuities in one dimensional Euler systems. ESAIM: M2AN 36 (2003) 1133-1159. | Numdam | Zbl 1137.65419

[16] T. Gallouët, L. Gastaldo, R. Herbin and J.-C. Latché, An unconditionally stable pressure correction scheme for compressible barotropic Navier-Stokes equations. ESAIM: M2AN 42 (2008) 303-331. | Numdam | Zbl 1132.35433

[17] T. Gallouët, R. Herbin and J.-C. Latché, A convergent finite-element volume scheme for the compressible Stokes problem. Part I: The isothermal case. Math. Comp. 78 (2009) 1333-1352. | Zbl pre05813098

[18] L. Gastaldo, R. Herbin and J.-C. Latché, A pressure correction scheme for the homogeneous two-phase flow model with two barotropic phases, in Finite Volumes for Complex Applications V - Problems and Perspectives - Aussois, France (2008) 447-454.

[19] L. Gastaldo, R. Herbin and J.-C. Latché, A discretization of the phase mass balance in fractional step algorithms for the drift-flux model. IMA J. Numer. Anal. (2009) doi:10.1093/imanum/drp006. | Zbl pre05853329

[20] J.-L. Guermond and L. Quartapelle, A projection FEM for variable density incompressible flows. J. Comput. Phys. 165 (2000) 167-188. | Zbl 0994.76051

[21] J.L. Guermond, P. Minev and J. Shen, An overview of projection methods for incompressible flows. Comput. Meth. Appl. Mech. Eng. 195 (2006) 6011-6045. | Zbl 1122.76072

[22] H. Guillard and F. Duval, A Darcy law for the drift velocity in a two-phase flow model. J. Comput. Phys. 224 (2007) 288-313. | Zbl 1119.76067

[23] F.H. Harlow and A.A. Amsden, A numerical fluid dynamics calculation method for all flow speeds. J. Comput. Phys. 8 (1971) 197-213. | Zbl 0221.76011

[24] D. Kuzmin and S. Turek, Numerical simulation of turbulent bubbly flows, in 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, Pisa, 22-24 September (2004).

[25] B. Larrouturou, How to preserve the mass fractions positivity when computing compressible multi-component flows. J. Comput. Phys. 95 (1991) 59-84. | Zbl 0725.76090

[26] M. Marion and R. Temam, Navier-Stokes equations: Theory and approximation, in Handbook of Numerical Analysis VI, P. Ciarlet and J.L. Lions Eds., North Holland (1998). | Zbl 0921.76040

[27] J.-M. Masella, I. Faille and T. Gallouët, On an approximate Godunov scheme. Int. J. Comput. Fluid Dyn. 12 (1999) 133-149. | Zbl 0944.76041

[28] F. Moukalled, M. Darwish and B. Sekar, A pressure-based algorithm for multi-phase flow at all speeds. J. Comput. Phys. 190 (2003) 550-571. | Zbl 1076.76074

[29] R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element. Numer. Methods Part. Differ. Equ. 8 (1992) 97-111. | Zbl 0742.76051

[30] J.E. Romate, An approximate Riemann solver for a two-phase flow model with numerically given slip relation. Comput. Fluids 27 (1998) 455-477. | Zbl 0968.76052

[31] A. Sokolichin and G. Eigenberger, Applicability of the standard k-ε turbulence model to the dynamic simulation of bubble columns: Part I. Detailed numerical simulations. Chem. Eng. Sci. 54 (1999) 2273-2284.

[32] A. Sokolichin, G. Eigenberger and A. Lapin, Simulation of buoyancy driven bubbly flow: Established simplifications and open questions. AIChE J. 50 (2004) 24-45.

[33] B. Spalding, Numerical computation of multi-phase fluid flow and heat transfer, in Recent Advances in Numerical Methods in Fluids 1, Swansea, Pineridge Press (1980) 139-168. | Zbl 0467.76094

[34] P. Wesseling, Principles of computational fluid dynamics, Springer Series in Computational Mathematics 29. Springer (2001). | Zbl 1185.76005