We construct a Roe-type numerical scheme for approximating the solutions of a drift-flux two-phase flow model. The model incorporates a set of highly complex closure laws, and the fluxes are generally not algebraic functions of the conserved variables. Hence, the classical approach of constructing a Roe solver by means of parameter vectors is unfeasible. Alternative approaches for analytically constructing the Roe solver are discussed, and a formulation of the Roe solver valid for general closure laws is derived. In particular, a fully analytical Roe matrix is obtained for the special case of the Zuber-Findlay law describing bubbly flows. First and second-order accurate versions of the scheme are demonstrated by numerical examples.
Keywords: two-phase flow, drift-flux model, Riemann solver, Roe scheme
@article{M2AN_2006__40_4_735_0,
author = {Fl\r{a}tten, Tore and Munkejord, Svend Tollak},
title = {The approximate {Riemann} solver of {Roe} applied to a drift-flux two-phase flow model},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {735--764},
year = {2006},
publisher = {EDP Sciences},
volume = {40},
number = {4},
doi = {10.1051/m2an:2006032},
mrnumber = {2274776},
zbl = {1123.76038},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2006032/}
}
TY - JOUR AU - Flåtten, Tore AU - Munkejord, Svend Tollak TI - The approximate Riemann solver of Roe applied to a drift-flux two-phase flow model JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2006 SP - 735 EP - 764 VL - 40 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2006032/ DO - 10.1051/m2an:2006032 LA - en ID - M2AN_2006__40_4_735_0 ER -
%0 Journal Article %A Flåtten, Tore %A Munkejord, Svend Tollak %T The approximate Riemann solver of Roe applied to a drift-flux two-phase flow model %J ESAIM: Modélisation mathématique et analyse numérique %D 2006 %P 735-764 %V 40 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2006032/ %R 10.1051/m2an:2006032 %G en %F M2AN_2006__40_4_735_0
Flåtten, Tore; Munkejord, Svend Tollak. The approximate Riemann solver of Roe applied to a drift-flux two-phase flow model. ESAIM: Modélisation mathématique et analyse numérique, Tome 40 (2006) no. 4, pp. 735-764. doi: 10.1051/m2an:2006032
[1] and, Discrete equations for physical and numerical compressible multiphase mixtures. J. Comput. Phys. 186 (2003) 361-396. | Zbl
[2] ,,, and, A relaxation method for two-phase flow models with hydrodynamic closure law. Numer. Math. 99 (2005) 411-440.
[3] , and, A semi-implicit relaxation scheme for modeling two-phase flow in a pipeline. SIAM J. Sci. Comput. 27 (2005) 914-936. | Zbl
[4] , An experimental investigation of the motion of long bubbles in inclined tubes. Int. J. Multiphas. Flow 10 (1984) 467-483.
[5] , Analyse numérique des modèles hydrodynamiques d'écoulements diphasiques instationnaires dans les réseaux de production pétrolière. Thèse ENS Lyon, France (1991).
[6] , and, A density perturbation method to study the eigenstructure of two-phase flow equation systems, J. Comput. Phys. 147 (1998) 463-484. | Zbl
[7] and, Hybrid flux-splitting schemes for a two-phase flow model. J. Comput. Phys. 175 (2002) 674-201.
[8] and, On a rough AUSM scheme for a one-dimensional two-phase model. Comput. Fluids 32 (2003) 1497-1530. | Zbl
[9] and, Hybrid flux-splitting schemes for a common two-fluid model. J. Comput. Phys. 192 (2003) 175-210. | Zbl
[10] and, A rough finite volume scheme for modeling two-phase flow in a pipeline. Comput. Fluids 28 (1999) 213-241. | Zbl
[11] and, High-resolution hybrid primitive-conservative upwind schemes for the drift-flux model. Comput. Fluids 31 (2002) 335-367. | Zbl
[12] and, The use of drift-flux techniques for the analysis of horizontal two-phase flows. Int. J. Multiphas. Flow 18 (1992) 787-801.
[13] , High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49 (1983) 357-393. | Zbl
[14] and, The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pur. Appl. Math. 48 (1995) 235-276. | Zbl
[15] ,, and, Compressible two-phase flows by central and upwind schemes. ESAIM: M2AN 38 (2004) 477-493. | Zbl | Numdam
[16] , Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge, UK (2002). | Zbl | MR
[17] ,, and, Transient simulation of two-phase flows in pipes. Int. J. Multiphas. Flow 24 (1998) 739-755. | Zbl
[18] , and, The multi-stage centred-scheme approach applied to a drift-flux two-phase flow model. Int. J. Numer. Meth. Fl. 52 (2006) 679-705. | Zbl
[19] and, A five equation reduced model for compressible two phase flow problems. J. Comput. Phys. 202 (2005) 664-698. | Zbl
[20] , Riemann solvers, the entropy condition, and difference approximations. SIAM J. Numer. Anal. 21 (1984) 217-235. | Zbl
[21] and, Hyperbolic two-pressure models for two-phase flow. J. Comput. Phys. 53 (1984) 124-151. | Zbl
[22] , Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43 (1981) 357-372. | Zbl
[23] , An approximate Riemann solver for a two-phase flow model with numerically given slip relation. Comput. Fluids 27 (1998) 455-477. | Zbl
[24] , Finite volume approximation of two-phase fluid flow based on an approximate Roe-type Riemann solver. J. Comput. Phys. 121 (1995) 1-28. | Zbl
[25] and, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150 (1999) 425-467. | Zbl
[26] and, Review article; Two-phase flow: models and methods. J. Comput. Phys. 56 (1984) 363-409. | Zbl
[27] and, MUSTA schemes for multi-dimensional hyperbolic systems: analysis and improvements. Int. J. Numer. Meth. Fl. 49 (2005) 117-147. | Zbl
[28] , Riemann solvers and numerical methods for fluid dynamics, 2nd edn. Springer-Verlag, Berlin (1999). | Zbl | MR
[29] , An upwind numerical method for two-fluid two-phase flow models. Nucl. Sci. Eng. 123 (1996) 147-168.
[30] and, An implicit second-order numerical method for three-dimensional two-phase flow calculations. Nucl. Sci. Eng. 130 (1998) 213-225.
[31] and, An approximate linearized Riemann solver for a two-fluid model. J. Comput. Phys. 124 (1996) 286-300. | Zbl
[32] , Towards the ultimate conservative difference scheme IV. New approach to numerical convection. J. Comput. Phys. 23 (1977) 276-299. | Zbl
[33] and, Average volumetric concentration in two-phase flow systems. J. Heat Transfer 87 (1965) 453-468.
Cité par Sources :





