Analysis of a coupled BEM/FEM eigensolver for the hydroelastic vibrations problem
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 38 (2004) no. 4, p. 653-672

A coupled finite/boundary element method to approximate the free vibration modes of an elastic structure containing an incompressible fluid is analyzed in this paper. The effect of the fluid is taken into account by means of one of the most usual procedures in engineering practice: an added mass formulation, which is posed in terms of boundary integral equations. Piecewise linear continuous elements are used to discretize the solid displacements and the fluid-solid interface variables. Spectral convergence is proved and error estimates are settled for the approximate eigenfunctions and their corresponding vibration frequencies. Implementation issues are also discussed and numerical experiments are reported.

DOI : https://doi.org/10.1051/m2an:2004028
Classification:  65N25,  65N30,  65N38,  70J30,  74F10,  76Q05
Keywords: fluid-structure interaction, hydroelasticity, added mass, BEM/FEM
@article{M2AN_2004__38_4_653_0,
     author = {Barrientos, Mauricio A. and Gatica, Gabriel N. and Rodr\'\i guez, Rodolfo and Torrej\'on, Marcela E.},
     title = {Analysis of a coupled BEM/FEM eigensolver for the hydroelastic vibrations problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {38},
     number = {4},
     year = {2004},
     pages = {653-672},
     doi = {10.1051/m2an:2004028},
     zbl = {1077.74054},
     mrnumber = {2087728},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2004__38_4_653_0}
}
Barrientos, Mauricio A.; Gatica, Gabriel N.; Rodríguez, Rodolfo; Torrejón, Marcela E. Analysis of a coupled BEM/FEM eigensolver for the hydroelastic vibrations problem. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 38 (2004) no. 4, pp. 653-672. doi : 10.1051/m2an:2004028. http://www.numdam.org/item/M2AN_2004__38_4_653_0/

[1] A. Alonso, A. Dello Russo, C. Otero-Souto, C. Padra and R. Rodríguez, An adaptive finite element scheme to solve fluid-structure vibration problems on non-matching grids. Comput. Visual. Sci. 4 (2001) 67-78. | Zbl 1017.74068

[2] I. Babuška and J. Osborn, Eigenvalue problems, in Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds., Vol. II, North-Holland, Amsterdam (1991) 641-787. | Zbl 0875.65087

[3] A. Bermúdez, R. Durán and R. Rodríguez, Finite element solution of incompressible fluid-structure vibration problems. Internat. J. Numer. Methods Eng. 40 (1997) 1435-1448.

[4] A. Bermúdez, R. Durán and R. Rodríguez, Finite element analysis of compressible and incompressible fluid-solid systems, Math. Comp. 67 (1998) 111-136. | Zbl 0898.73060

[5] A. Bermúdez and R. Rodríguez, Finite element analysis of sloshing and hydroelastic vibrations under gravity. ESAIM: M2AN 33 (1999) 305-327. | Numdam | Zbl 0961.74057

[6] A. Bermúdez, R. Rodríguez and D. Santamarina, A finite element solution of an added mass formulation for coupled fluid-solid vibrations. Numer. Math. 87 (2000) 201-227. | Zbl 0998.76046

[7] P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds., Vol. II, North-Holland, Amsterdam (1991) 17-351. | Zbl 0875.65086

[8] M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal. 19 (1988) 613-621. | Zbl 0644.35037

[9] V.J. Ervin, N. Heuer and E.P. Stephan, On the h-p version of the boundary element method for Symm’s integral equation on polygons. Comput. Methods Appl. Mech. Eng. 110 (1993) 25-38. | Zbl 0842.65076

[10] G.N. Gatica and G.C. Hsiao, Boundary-Field Equation Methods for a Class of Nonlinear Problems. Longman, Harlow, Pitman Res. Notes Math. Ser. 331 (1995). | MR 1379331 | Zbl 0832.65126

[11] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston, MA, Monogr. Stud. Math. 24 (1985). | MR 775683 | Zbl 0695.35060

[12] M. Hamdi, Y. Ousset and G. Verchery, A displacement method for the analysis of vibrations of coupled fluid-structure systems. Internat. J. Numer. Methods Eng. 13 (1978) 139-150. | Zbl 0384.76060

[13] G.C. Hsiao, On the boundary-field equation methods for fluid-structure interactions, in Problems and Methods in Mathematical Physics (Chemnitz, 1993), L. Jentsch and F. Tröltzsch, Eds. Teubner, Stuttgart, Teubner-Texte Math. 134 (1994) 79-88. | Zbl 0849.76040

[14] G.C. Hsiao and W.L. Wendland, A finite element method for some integral equations of the first kind. J. Math. Anal. Appl. 58 (1977) 449-481. | Zbl 0352.45016

[15] G.C. Hsiao, R.E. Kleinman and G.F. Roach, Weak solutions of fluid-solid interaction problems. Math. Nachr. 218 (2000) 139-163. | Zbl 0963.35043

[16] G.C. Hsiao, R.E. Kleinman and L.S. Schuetz, On variational formulations of boundary value problems for fluid-solid interactions. Elastic Wave Propagation (Galway, 1988). North-Holland, Amsterdam, North-Holland Ser. Appl. Math. Mech. 35 (1989) 321-326.

[17] W. Mclean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000). | MR 1742312 | Zbl 0948.35001

[18] D. Mercier, Some systems of PDE on polygonal networks, in Partial Differential Equations on Multistructures (Luminy, 1999), F.A. Mehmeti, J. von Below and S. Nicaise Eds., Dekker, New York, Lect. Notes Pure Appl. Math. 219 (2001) 163-182. | Zbl 0973.35071

[19] D. Mercier, Problèmes de transmission sur des réseaux polygonaux pour des systèmes d'EDP. Ann. Fac. Sci. Toulouse Math. 10 (2001) 107-162. | Numdam | Zbl 1078.35514

[20] H.J.-P. Morand and R. Ohayon, Fluid-Structure Interaction. J. Wiley & Sons, Chichester (1995). | Zbl 0834.73002

[21] P. Ryan, Eigenvalue and eigenfunction error estimates for finite element formulations of linear hydroelasticity. Math. Comp. 70 (2001) 471-487. | Zbl 0969.65103

[22] M.E. Torrejón, Solución Numérica de Problemas de Vibraciones Hidroelásticas. Degree Thesis in Mathematical Engineering, Universidad de Concepción, Chile (2003).

[23] O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method. Mc Graw Hill, London (1989). | Zbl 1106.01326