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Abstract. A coupled finite/boundary element method to approximate the free vibration modes of
an elastic structure containing an incompressible fluid is analyzed in this paper. The effect of the
fluid is taken into account by means of one of the most usual procedures in engineering practice:
an added mass formulation, which is posed in terms of boundary integral equations. Piecewise linear
continuous elements are used to discretize the solid displacements and the fluid-solid interface variables.
Spectral convergence is proved and error estimates are settled for the approximate eigenfunctions and
their corresponding vibration frequencies. Implementation issues are also discussed and numerical
experiments are reported.
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1. Introduction

In this paper we analyze a coupled boundary/finite element method to numerically solve a spectral problem
arising in fluid-solid interactions: the computation of free hydroelastic vibrations. In particular, we consider the
problem of determining the harmonic vibrations of a coupled system consisting of an elastic vessel containing
an incompressible fluid.

The most direct approach to solve this problem is to discretize a coupled formulation in terms of solid dis-
placements and fluid pressure (see for instance [23]). However, such strategy leads to non symmetric eigenvalue
problems, which are usually hard to solve.

Another procedure has been considered in [5] (see also [3] and [4]). It is based on using displacement variables
to describe the fluid, discretized by lowest-degree Raviart-Thomas finite elements on a triangular mesh. The
interface coupling with classical piecewise linear finite elements for the solid displacements is weakly imposed,
yielding a nonconforming method. It has been proved that no spurious modes arise, as typically happens
with other discretizations of pure displacement formulations (see [12]), and error estimates have been settled.
Although this method works in two or three dimensions, in the first case it can be conveniently implemented
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Figure 1. Fluid and solid domains.

by replacing the fluid displacement field by the curl of a stream function. This allows a significant saving of
computational effort, since only a scalar magnitude needs to be discretized. However this strategy does not
extend to three-dimensional problems.

A third approach consists in eliminating the fluid variables by means of a so-called added mass formulation
(see, for instance, [23] or [20]). This is very likely the most used technique in engineering practice to deal with
the interaction of an incompressible fluid and an elastic structure. It is based on taking into account the effect
of the fluid by means of a Neumann-to-Dirichlet operator (also called the Steklov-Poincaré operator) on the
fluid-solid interface. This operator can be further discretized by means of boundary elements or finite elements.
For instance, finite element discretizations of this problem have been recently analyzed in [6] and [21].

On the other hand, there are many publications on fluid-solid interaction problems which make use of coupling
procedures between boundary and finite element methods. However, most of them are of engineering nature
without rigorous justifications. To the author’s best knowledge, the first paper in this direction is [16], although
for the case of a compressible fluid. More recently, a complete analysis of the fluid-solid problem from both
engineering and mathematical point of views has been given in [15] (see also [13]).

In the present paper we propose and analyze a coupled boundary/finite element method for the numerical
solution of the added mass formulation described above. We perform this analysis in the two-dimensional case,
but the method can be readily extended to three-dimensional problems. In both cases it leads to convenient
symmetric eigenvalue problems and does not involve vector variables for the fluid.

The outline of the paper is as follows. In Section 2, we introduce some equivalent variational formulations of
the spectral problem, involving integral equations to deal with the Neumann-to-Dirichlet operator. We recall
several properties of the basic boundary integral operators which will be used in the sequel. We end this section
by introducing a functional settling to analyze the spectral problem which allows us to characterize its solutions
and to state their regularity properties. The discrete problem is introduced and analyzed in Section 3, where
error estimates are proved both for eigenfunctions and eigenvalues. Some implementation topics are discussed
in Section 4, including an equivalent formulation of the discrete spectral problem which turns out to be more
convenient from the computational point of view. Finally, we report in this section some numerical experiments.

2. The model problem

We consider the problem of determining the vibration modes of a linear elastic structure in contact with an
incompressible, inviscid and barotropic fluid. Our model problem consists of a two-dimensional vessel completely
filled with fluid, as shown in Figure 1.
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Let ΩF and ΩS be polygonal domains in R
2 occupied by the fluid and the solid, respectively. Let us denote

by ΓI the interface between solid and fluid and by ν its unit normal vector pointing outwards ΩF . The external
solid boundary is assumed to be the union of two parts: ΓD and ΓN ; the structure is supposed to be free along ΓN

and fixed along ΓD (for simplicity, meas(ΓD) > 0 is also assumed). Finally, n denotes the unit outward normal
vector along ΓN .

Throughout this paper we will use standard notation for Sobolev spaces and norms. Furthermore, we will
denote by C a generic constant not necessarily the same at each occurrence.

The physical magnitudes of the fluid will be denoted by:

• w: the displacement vector field;
• p: the pressure;
• ρF : the density;

and those of the solid by:

• u: the displacement vector field;
• ρS : the density;
• λS and µS : the Lamé coefficients, which are defined by

λS :=
νSES

(1 − 2νS)(1 + νS)
and µS :=

ES

2(1 + νS)
,

where ES > 0 is the Young modulus and νS ∈
(
0, 1

2

)
is the Poisson ratio;

• ε(u): the strain tensor defined by εij(u) := 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, i, j = 1, 2;

• σ(u): the stress tensor, which we assume related to the strains by Hooke’s law:

σij(u) = λS

2∑
k=1

εkk(u)δij + 2µSεij(u), i, j = 1, 2.

In absence of external forces, the classical linearizing procedure yields the following equations for the free small
amplitude motions of the fluid-solid system:

div [σ(u)] = ρS ü in ΩS , t > 0,
σ(u)n = 0 on ΓN , t ≥ 0,

u = 0 on ΓD , t ≥ 0,
σ(u)ν + pν = 0 on ΓI , t ≥ 0,

w · ν = u · ν on ΓI , t ≥ 0,
−∇p = ρFẅ in ΩF , t > 0,

div ẇ = 0 in ΩF , t ≥ 0,

where the dots denote time-derivatives.
The natural vibration modes of the coupled system are given by the harmonic in time solutions of these

equations:

u(x, t) = u(x) cosωt, x ∈ ΩS , t ≥ 0,
p(x, t) = p(x) cosωt, x ∈ ΩF , t ≥ 0,

w(x, t) = w(x) cosωt, x ∈ ΩF , t ≥ 0,

where ω > 0 is the vibration frequency and u(x), p(x), and w(x) are the amplitudes of the corresponding
magnitudes (which throughout the paper will be denoted as the magnitudes themselves).
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For any solution of this form, ∇p = ω2ρFw and, hence, there exists a fluid displacement potential given by

ϕ :=
p

ω2ρF

,

such that w = ∇ϕ.
Both, pressure and displacement fields in the fluid can then be written in terms of this potential, what leads

to the following spectral problem for the free vibration modes of the fluid-structure system:

Find ω > 0, u ∈ H1(ΩS)2, and ϕ ∈ H1(ΩF), (u, ϕ) �= 0, such that:

−div [σ(u)] = ω2ρSu in ΩS , (2.1)
σ(u)n = 0 on ΓN , (2.2)

u = 0 on ΓD , (2.3)
−σ(u)ν = ω2ρFϕν on ΓI , (2.4)

∂ϕ

∂ν
= u · ν on ΓI , (2.5)

∆ϕ = 0 in ΩF . (2.6)

To obtain a variational formulation of this problem, we test equation (2.1) with vector fields in the space
H1

ΓD
(ΩS)

2 :=
{
v ∈ H1(ΩS)2 : v|ΓD

= 0
}
. Thus, integrating by parts and using (2.2) and (2.4) we have

∫
ΩS

σ(u) : ε(v) dx = ω2

(∫
ΩS

ρSu · v dx+
∫

ΓI

ρFϕv · ν ds

)
∀v ∈ H1

ΓD
(ΩS)2. (2.7)

The harmonic potential ϕ is in its turn a solution of the Neumann problem (2.6)–(2.5); thus it is determined,
up to an additive constant, by the normal component of the solid displacement u · ν. In what follows we use
standard boundary integral equations to relate both magnitudes.

To this end, let E(x, y) := 1
2π log 1

|x−y| be the fundamental solution of the Laplace operator in R
2, and recall

Green’s representation formula for an interior problem in ΩF (see e.g. [10, 17]):

ϕ(x) =
∫

ΓI

[
E(x, y)

∂ϕ

∂ν
(y) − ∂E(x, y)

∂ν(y)
ϕ(y)

]
dsy ∀x ∈ ΩF , (2.8)

where ν(y) denotes the unit outward normal to y ∈ ΓI .
Then, using the well known jump conditions of the layer potentials, and according to the transmission

condition (2.5), we obtain the following integral equations (see e.g. [8, 10, 17]):

ϕ = V (u · ν) +
(

1
2
I −K

)
ϕ on ΓI , (2.9)

Wϕ =
(

1
2
I −K ′

)
(u · ν) on ΓI , (2.10)

where V , K, K ′ and W are the so-called boundary integral operators of the single, double, adjoint of the double
and hypersingular layer potentials, respectively. These operators are formally defined for a Lipschitz-continuous
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boundary ΓI by:

(V ϕ)(x) :=
∫

ΓI

E(x, y)ϕ(y) dsy, x ∈ ΓI ,

(Kψ)(x) :=
∫

ΓI

∂E(x, y)
∂ν(y)

ψ(y) dsy, x ∈ ΓI ,

(K ′ϕ)(x) :=
∫

ΓI

∂E(x, y)
∂ν(x)

ϕ(y) dsy, x ∈ ΓI ,

(Wψ)(x) := − ∂

∂ν(x)

∫
ΓI

∂E(x, y)
∂ν(y)

ψ(y) dsy, x ∈ ΓI .

Their main mapping properties are collected in the following lemma, where, hereafter, 〈·, ·〉 denotes the duality
pairing between H1/2(ΓI) and H−1/2(ΓI) with respect to the L2(ΓI) inner product,

H−1/2
0 (ΓI) :=

{
ϕ ∈ H−1/2(ΓI) : 〈1, ϕ〉 = 0

}
and H1/2

0 (ΓI) :=
{
ψ ∈ H1/2(ΓI) : 〈ψ, 1〉 = 0

}
.

Lemma 2.1. The following linear operators are continuous:

V : H−1/2(ΓI) −→ H1/2(ΓI),

K : H1/2(ΓI) −→ H1/2(ΓI),

K ′ : H−1/2(ΓI) −→ H−1/2(ΓI),

W : H1/2(ΓI) −→ H−1/2(ΓI).

In addition, there holds

K(1) = −1
2

and kerW = 〈{1}〉 , (2.11)

and the operators K and K ′ are adjoint with respect to the duality pairing 〈·, ·〉; i.e.,

〈Kϕ,ψ〉 = 〈ϕ,K ′ψ〉 ∀ϕ ∈ H1/2(ΓI) ∀ψ ∈ H−1/2(ΓI). (2.12)

Furthermore, 〈V ·, ·〉 and 〈·,W ·〉 are symmetric continuous bilinear forms on H−1/2(ΓI)×H−1/2(ΓI) and H1/2(ΓI)×
H1/2(ΓI), respectively, and there exist strictly positive constants α0 and α1 such that

〈V ϕ, ϕ〉 ≥ α0‖ϕ‖2
H−1/2(ΓI)

∀ϕ ∈ H−1/2
0 (ΓI) (2.13)

and
〈ψ,Wψ〉 ≥ α1‖ψ‖2

H1/2(ΓI )
∀ψ ∈ H1/2

0 (ΓI). (2.14)

Proof. See [8] and [14]. �
As a consequence of this lemma we also have the following result:

Lemma 2.2. There holds:
(1) K ′

(
H−1/2

0 (ΓI)
)
⊂ H−1/2

0 (ΓI);

(2) W induces an isomorphism, still denoted by W , from H1/2
0 (ΓI) onto H−1/2

0 (ΓI).

Proof. The first assertion is an immediate consequence of the fact that K(1) = − 1
2 . On the other hand, W (1) =

0 implies W
(
H1/2

0 (ΓI)
)

⊂ H−1/2
0 (ΓI). Thus the second assertion follows from (2.14) and the Lax-Milgram

lemma. �
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Replacing (2.9) into (2.7) and using (2.10) and (2.12), we obtain that any solution of Problem (2.1)–(2.6)
also solves the following variational problem:

Find ω ≥ 0 and 0 �= (u, ϕ) ∈ H1
ΓD

(ΩS)
2 × H1/2(ΓI) such that

∫
ΩS

σ(u) : ε(v) dx = ω2

[∫
ΩS

ρSu · v dx+ ρF 〈V (u · ν),v · ν〉 + ρF

〈(
1
2
I −K

)
ϕ,v · ν

〉]
∀v ∈ H1

ΓD
(ΩS)2

(2.15)
and

〈ψ,Wϕ〉 =
〈(

1
2
I −K

)
ψ,u · ν

〉
∀ψ ∈ H1/2(ΓI). (2.16)

The following lemma shows that this variational problem is actually equivalent to the spectral
Problem (2.1)–(2.6):

Lemma 2.3. Problems (2.1)–(2.6) and (2.15)–(2.16) are equivalent. More precisely, there hold:
(1) Let (ω,u, ϕ) ∈ R

+ × H1(ΩS)
2 × H1(ΩF) be a solution of (2.1)–(2.6). Then, (ω,u, ϕ|ΓI

) is a solution of
(2.15)–(2.16).

(2) Let (ω,u, ϕ̃) ∈ R
+ × H1

ΓD
(ΩS)2 × H1/2(ΓI) be a solution of (2.15)–(2.16). Then, ∃ϕ ∈ H1(ΩF) such that

ϕ|ΓI
= ϕ̃ and (ω,u, ϕ) is a solution of (2.1)–(2.6).

Proof. The first assertion has been already proved above. In order to prove the second one, let (ω,u, ϕ̃) ∈
R

+ ×H1
ΓD

(ΩS)
2 ×H1/2(ΓI) be a solution of (2.15)–(2.16). By testing (2.16) with ψ = 1 and using (2.11), we have

that 〈1,u · ν〉 = 0. Then, the following Neumann problem is compatible:

∆ϕ = 0 in ΩF ,

∂ϕ

∂ν
= u · ν on ΓI .

Hence, its solution ϕ is well defined up to an additive constant. Moreover, Green’s representation formula (2.8)
implies that equations (2.9) and (2.10) hold true (see e.g. [8, 10]). Then, from (2.10) and (2.16) we have that
W (ϕ|ΓI

) = Wϕ̃, which according to (2.11) yields that ϕ|ΓI
− ϕ̃ is constant. Hence, we can choose the additive

constant defining uniquely ϕ ∈ H1(ΩF) such that ϕ|ΓI
= ϕ̃.

Now, ϕ clearly satisfies (2.5)-(2.6) and, because of (2.15) and (2.9),

∫
ΩS

σ(u) : ε(v) dx = ω2

(∫
ΩS

ρSu · v dx+
∫

ΓI

ρFϕv · ν dx

)
∀v ∈ H1

ΓD
(ΩS)

2.

Finally, (2.1) is obtained by testing this equation with v ∈ D(ΩS)2, and (2.2) and (2.4) by doing it with arbitrary
v ∈ H1

ΓD
(ΩS)2. Therefore, we have proved that (ω,u, ϕ) is a solution of (2.1)–(2.6). �

For the theoretical analysis, it will be useful to consider a variational formulation slightly different
to (2.15)–(2.16). To this goal, let

V :=

{
v ∈ H1

ΓD
(ΩS)2 :

∫
ΓI

v · ν ds = 0

}

be the space of admissible solid displacements, in the sense of preserving the volume of ΩF , and

Q := H1/2
0 (ΓI).
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We define the following problem:

Find ω ≥ 0 and 0 �= (u, ϕ) ∈ V ×Q such that

∫
ΩS

σ(u) : ε(v) dx = ω2

[∫
ΩS

ρSu · v dx+ ρF 〈V (u · ν),v · ν〉 + ρF

〈(
1
2
I −K

)
ϕ,v · ν

〉]
∀v ∈ V (2.17)

and

〈ψ,Wϕ〉 =
〈(

1
2
I −K

)
ψ,u · ν

〉
∀ψ ∈ Q. (2.18)

We show below that this variational formulation is equivalent to (2.15)–(2.16). To this aim, let v0 be an
arbitrary, but fixed, element in H1

ΓD
(ΩS)

2 such that
∫
ΓI

v0 · ν ds �= 0. Also, for simplicity of presentation, we
denote

B ((w, ψ),v) :=
∫

ΩS

ρSw · v dx+ ρF 〈V (w · ν),v · ν〉 + ρF

〈(
1
2
I −K

)
ψ,v · ν

〉

∀w,v ∈ H1
ΓD

(ΩS)
2 and ∀ψ ∈ H1/2(ΓI).

Lemma 2.4. Problems (2.15)–(2.16) and (2.17)–(2.18) are equivalent. More precisely, there hold:
(1) Let (ω,u, ϕ) ∈ R

+ × H1
ΓD

(ΩS)
2 × H1/2(ΓI) be a solution of (2.15)–(2.16) and let

ϕ̃ := ϕ− 1
meas(ΓI)

∫
ΓI

ϕ ds.

It follows that (u, ϕ̃) ∈ V ×Q and (ω,u, ϕ̃) is a solution of (2.17)–(2.18).
(2) Let (ω,u, ϕ̃) ∈ R

+ × V ×Q be a solution of (2.17)–(2.18). It follows that ω > 0 and (ω,u, ϕ̃+ c0) is a
solution of (2.15)–(2.16), where

c0 :=

∫
ΩS

σ(u) : ε(v0) dx− ω2B
(
(u, ϕ̃),v0

)
ω2ρF

∫
ΓI

v0 · ν ds
·

Proof. Let (ω,u, ϕ) ∈ R
+ × H1

ΓD
(ΩS)2 × H1/2(ΓI) be a solution of (2.15)–(2.16) and ϕ̃ as defined above. It is

clear that ϕ̃ ∈ Q. Also taking ψ = 1 in (2.16) and using (2.11) we have that u ∈ V. Next, it is easy to see that〈(
1
2I −K

)
ϕ,v · ν

〉
=
〈(

1
2I −K

)
ϕ̃,v · ν

〉
∀v ∈ V and hence (2.15) gives

∫
ΩS

σ(u) : ε(v) dx = ω2B ((u, ϕ̃),v) ∀v ∈ V.

In addition, since W (1) = 0 we obtain Wϕ = Wϕ̃, and therefore (2.16) yields

〈ψ,Wϕ̃〉 =
〈(

1
2
I −K

)
ψ,u · ν

〉
∀ψ ∈ Q.

Thus we have proved that (ω,u, ϕ) is a solution of (2.17)–(2.18).
Conversely, let (ω,u, ϕ̃) ∈ R

+ × V × Q be a solution of (2.17)–(2.18). We first observe that u �= 0 since
otherwise (2.18) and Lemma 2.2(2) would imply that ϕ̃ would also vanish. Then, from (2.17) and Korn’s
inequality we deduce that ω > 0.
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Next, let ϕ = ϕ̃+ c0, with c0 as defined above. From the definition of c0 we have that∫
ΩS

σ(u) : ε(v0) dx = ω2B
(
(u, ϕ̃),v0

)
+ ω2ρF

∫
c0 v0 · ν ds = ω2B

(
(u, ϕ),v0

)
,

whereas, since
〈(

1
2I −K

)
ϕ,v · ν

〉
=
〈(

1
2I −K

)
ϕ̃,v · ν

〉
∀v ∈ V , we have from (2.17) that∫

ΩS

σ(u) : ε(v) dx = ω2B ((u, ϕ̃),v) = ω2B ((u, ϕ),v) ∀v ∈ V.

Then, since H1
ΓD

(ΩS)2 = V ⊕
〈
{v0}

〉
, we conclude that (ω,u, ϕ) satisfies (2.15).

On the other hand, given ψ ∈ H1/2(ΓI) let

ψ̃ := ψ − 1
meas(ΓI)

∫
ΓI

ψ ds.

Then ψ̃ ∈ Q and, hence, using (2.18) and the fact that W (1) = 0, we obtain

〈ψ,W (ϕ̃+ c0)〉 =
〈
ψ̃,Wϕ̃

〉
=
〈(

1
2
I −K

)
ψ̃,u · ν

〉
=
〈(

1
2
I −K

)
ψ,u · ν

〉
.

Thus (ω,u, ϕ) satisfies (2.16) and we conclude the proof. �
A last convenient form of this problem can be obtained by eliminating ϕ ∈ Q. In fact, from (2.18) and

Lemma 2.2, we have that

ϕ = W−1

(
1
2
I −K ′

)
(u · ν).

Then, the right hand side of (2.17) can be written in terms of the operator

M := V +
(

1
2
I −K

)
W−1

(
1
2
I −K ′

)
: H−1/2

0 (ΓI) −→ H1/2(ΓI)/R.

This is the well known Steklov-Poincaré or NtD (Neumann to Dirichlet) operator which, to a given Neumann
data g ∈ H−1/2

0 (ΓI), associatesMg = z|ΓI
∈ H1/2(ΓI)/R, with z ∈ H1(ΩF)/R being the solution of the compatible

Neumann problem (see e.g. [17])

∆z = 0 in ΩF ,

∂z

∂ν
= g on ΓI .

Note that 〈Mg,v · ν〉 is well defined ∀v ∈ V, because 〈1,v · ν〉 = 0. Then, any solution of (2.17)–(2.18) also
satisfies the following problem:

Find ω ≥ 0 and 0 �= u ∈ V such that

∫
ΩS

σ(u) : ε(v) dx = ω2

[∫
ΩS

ρSu · v dx+ ρF 〈M(u · ν),v · ν〉
]

∀v ∈ V. (2.19)

In the context of fluid-structure interactions ρFM is called the added mass operator, since it condenses the whole
effect of the incompressible fluid on an integral on the wetted solid boundary (i.e., on the fluid-solid interface).

The following lemma shows that the spectral problem above is actually equivalent to Problem (2.17)–(2.18).
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Lemma 2.5. Problems (2.17)–(2.18) and (2.19) are equivalent. More precisely, there hold:
(1) Let (ω,u, ϕ̃) ∈ R

+ × V ×Q be a solution of (2.17)–(2.18). Then (ω,u) is a solution of (2.19).
(2) Let (ω,u) ∈ R

+ × V be a solution of (2.19). Then, there exists ϕ ∈ Q such that (ω,u, ϕ) is a solution
of (2.17)–(2.18).

Proof. The first assertion has been already proved above. To prove the second one, let (ω,u) ∈ R
+ × V be a

solution of (2.19). Let ϕ = W−1
(

1
2I −K ′)u · ν ∈ H1/2

0 (ΓI). Then, clearly (ω,u, ϕ) ∈ R
+ ×V ×Q is a solution

of (2.17)–(2.18). �

Thus, as a consequence of the three previous lemmas we have the following result:

Theorem 2.6. Spectral problems (2.1)–(2.6), (2.15)–(2.16), (2.17)–(2.18) and (2.19) are equivalent.

The solutions of the variational spectral problem (2.19) are known to be a sequence of strictly positive
vibration frequencies ωn → ∞, each of them with a finite dimensional subspace of functions u ∈ V satisfying
(2.19) (see for instance [6]). Anyway, we shall obtain this result again, since it is an immediate consequence of
a regularizing property of the source problem associated to (2.19), which will be used below to prove spectral
convergence results.

Let a and b be the continuous bilinear forms on V × V defined by

a(u,v) :=
∫

ΩS

σ(u) : ε(v) dx,

b(u,v) :=
∫

ΩS

ρSu · v dx+ ρF 〈M(u · ν),v · ν〉 .

The bilinear form a is symmetric and, by Korn’s inequality, elliptic. Regarding b we have the following result:

Lemma 2.7. The bilinear form b is symmetric and positive definite; moreover,

b(v,v) ≥ ρS‖v‖
2
L2(ΩS )2 + ρFα0‖v · ν‖2

H−1/2(ΓI)
> 0 ∀v ∈ V : v �= 0.

Proof. The symmetry is consequence of the definition ofM , the symmetry of 〈V ·, ·〉 and 〈·,W ·〉, and Lemma 2.2.
To prove the inequality yielding the positive definiteness, note that from the definition of b we have

b(v,v) = ρS‖v‖
2
L2(ΩS )2 + ρF 〈V (v · ν),v · ν〉 + ρF

〈(
1
2
I −K

)
W−1

(
1
2
I −K ′

)
(v · ν),v · ν

〉
.

The last term in the right-hand side above is non-negative as a consequence of 2.12, Lemma 2.2, and (2.14).
Then (2.13) allows us to conclude the proof. �

The above lemma shows that b is an inner product on V. Then, it defines a norm on this space that we
denote | · |, namely,

|v| := b(v,v)1/2 =

[∫
ΩS

ρS |v|
2 dx+ ρF 〈M(v · ν),v · ν〉

]1/2

v ∈ V.

This norm will play a role in the last section for proving a double order of convergence for the approximation
of the vibration frequencies.

Let T : V −→ V be the linear bounded operator defined for any f ∈ V by:

Tf := u ∈ V : a(u,v) = b(f ,v) ∀v ∈ V. (2.20)
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Because of the symmetry of a and b, T is self-adjoint with respect to both bilinear forms; thus all of its
eigenvalues are real and positive. Furthermore, clearly (λ,u) is an eigenpair of T if and only if ω := 1√

λ
and u

are solution of (2.19).
We omit the proof of the following lemma, regarding a regularizing property of T , since it is essentially the

same as that of Proposition 4.3 in [6]:

Lemma 2.8. There exist constants t ∈ (0, 1] and C > 0 such that if u = Tf , with f ∈ V, then u ∈ H1+t(ΩS)
2

and
‖u‖H1+t(ΩS )2 ≤ C |f | .

The constant t in this lemma depends on the reentrant angles of ΩS , the angles between ΓD and ΓN , and the
Lamé coefficients (see [11], as well as [18,19] for further results on mixed Laplace-Lamé transmission problems).

As an immediate consequence of Lemma 2.8 and the compact inclusion H1+t(ΩS)2 ∩V ↪→ V, T is a compact
operator and the following spectral characterization holds:

Theorem 2.9. The spectrum of T consists of λ = 0 and a sequence of strictly positive finite multiplicity
eigenvalues {λn : n ∈ N}.

3. Discrete analysis

To discretize problem (2.17)–(2.18) we use standard finite elements. Let
{
T S

h

}
be a family of regular trian-

gulations of ΩS , where h stands for the mesh-size. Let
{
T I

h

}
be the family of meshes induced by T S

h on ΓI . Let
Lh(ΩS) and Lh(ΓI) be the spaces of continuous piecewise linear functions on T S

h and T I
h , respectively. Consider

the following finite dimensional subspaces of V and Q:

Vh :=

{
vh ∈ Lh(ΩS)

2 : vh|ΓD
= 0 and

∫
ΓI

vh · ν ds = 0

}
,

Qh := Lh(ΓI) ∩ H1/2
0 (ΓI).

Thus, we obtain the following discrete version of problem (2.17)–(2.18):

Find ωh ≥ 0 and 0 �= (uh, ϕh) ∈ Vh ×Qh such that

∫
ΩS

σ(uh) : ε(vh) dx = ω2
h

[∫
ΩS

ρSuh · vh dx+ ρF 〈V (uh · ν),vh · ν〉 + ρF

〈(
1
2
I −K

)
ϕh,vh · ν

〉]

∀vh ∈ Vh (3.1)

and

〈ψh,Wϕh〉 =
〈(

1
2
I −K

)
ψh,uh · ν

〉
∀ψh ∈ Qh. (3.2)

Let bh be the continuous bilinear form on V × V defined by

bh(u,v) :=
∫

ΩS

ρSu · v dx+ ρF 〈V (u · ν),v · ν〉 + ρF

〈(
1
2
I −K

)
ϕh,v · ν

〉
,

with ϕh ∈ Qh being the solution of

〈ψh,Wϕh〉 =
〈(

1
2
I −K

)
ψh,u · ν

〉
∀ψh ∈ Qh.
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This bilinear form is also symmetric. Indeed, for u,v ∈ V ,

bh(v,u) =
∫

ΩS

ρSv · u dx+ ρF 〈V (v · ν),u · ν〉 + ρF

〈(
1
2
I −K

)
ηh,u · ν

〉
,

with ηh ∈ Qh being the solution of

〈ζh,Wηh〉 =
〈(

1
2
I −K

)
ζh,v · ν

〉
∀ζh ∈ Qh.

The first terms in bh(u,v) and bh(v,u) clearly coincide. So do the second ones because of the symmetry
of 〈V ·, ·〉. Regarding the third ones we have〈(

1
2
I −K

)
ϕh,v · ν

〉
= 〈ϕh,Wηh〉 = 〈ηh,Wϕh〉 =

〈(
1
2
I −K

)
ηh,u · ν

〉
,

where we have used the definitions of ϕh and ηh above, and the symmetry of 〈·,W ·〉.
Let Th : V −→ V be the bounded linear operator given by

Thf = uh ∈ Vh : a(uh,vh) = bh(f ,vh) ∀vh ∈ Vh. (3.3)

Because of the symmetry of a and bh, Th is self-adjoint with respect to both bilinear forms; thus all of its
eigenvalues are real and positive. Furthermore, clearly (λh,uh) is an eigenpair of Th if and only if ωh := 1√

λh

and uh are solution of (3.1)–(3.2).
Our next goal is to prove that Th converges in norm to T , a property that will be used below to obtain

spectral approximation results. Since the bilinear forms b and bh do not coincide, (3.3) can be seen as a non-
conforming finite element approximation of (2.20). In the two following lemmas we will prove consistency and
approximation estimates, as usual for this kind of methods.

Lemma 3.1. There exist constants C > 0 and s ∈
(

1
2 , 1

]
such that, ∀f , g ∈ V ,

|b(f , g) − bh(f , g)| ≤ Chs |f | ‖g‖H1(ΩS )2 , (3.4)

and
|b(f , g) − bh(f , g)| ≤ Ch2s‖f‖H1(ΩS )2‖g‖H1(ΩS )2 . (3.5)

Proof. Let f , g ∈ V. According to the definitions of b and bh we have

b(f , g) − bh(f , g) = ρF

[〈(
1
2
I −K

)
ϕ, g · ν

〉
−
〈(

1
2
I −K

)
ϕh, g · ν

〉]
,

where ϕ ∈ Q and ϕh ∈ Qh are respectively defined by

〈ψ,Wϕ〉 =
〈(

1
2
I −K

)
ψ,f · ν

〉
∀ψ ∈ Q

and

〈ψh,Wϕh〉 =
〈(

1
2
I −K

)
ψh,f · ν

〉
∀ψh ∈ Qh.

Now, let ξ ∈ Q and ξh ∈ Qh be the respective solutions of

〈ξ,Wψ〉 =
〈(

1
2
I −K

)
ψ, g · ν

〉
∀ψ ∈ Q
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and

〈ξh,Wψh〉 =
〈(

1
2
I −K

)
ψh, g · ν

〉
∀ψh ∈ Qh.

Then, taking ψ = ϕ and ψh = ϕh in the two equations above we obtain

b(f , g) − bh(f , g) = ρF [〈ξ,Wϕ〉 − 〈ξh,Wϕh〉] = ρF 〈ξ − ξh,Wϕ〉 , (3.6)

the latter because 〈ξh,Wϕh〉 = 〈ξh,Wϕ〉. Moreover, since 〈ξ − ξh,Wϕh〉 = 0, we have

|b(f , g) − bh(f , g)| = |ρF 〈ξ − ξh,W (ϕ− ϕh)〉| ≤ C‖ξ − ξh‖H1/2(ΓI )
‖ϕ− ϕh‖H1/2(ΓI)

. (3.7)

To estimate ‖ϕ− ϕh‖H1/2(ΓI )
, let us recall that ϕ = z|ΓI

, where z ∈ H1(ΩF) is a solution of the compatible
Neumann problem (see for instance [17])

∆z = 0 in ΩF ,

∂z

∂ν
= f · ν on ΓI .

Then the trace theorem, the Lax-Milgram lemma, and Lemma 2.7 yield

‖ϕ‖H1/2(ΓI )
≤ C‖f · ν‖H−1/2(ΓI )

≤ C|f |. (3.8)

Moreover, since f · ν ∈ H1/2(Γj) for all the edges Γj of ΓI (j = 1, . . . , J), we know that ∃s ∈
(

1
2 , 1

]
such that

z ∈ H1+s(ΩF) (see [11]), and

‖z‖H1+s(ΩF ) ≤ C

J∑
j=1

‖f · ν‖H1/2(Γj)
.

Thus, ϕ = z|ΓI
∈ H1/2+s(ΓI). Therefore, its Lagrange interpolant ϕI ∈ Qh is well defined and satisfies

‖ϕ− ϕI‖H1/2(ΓI)
≤ hs‖ϕ‖H1/2+s(ΓI )

≤ Chs‖z‖H1+s(ΩF ) ≤ Chs
J∑

j=1

‖f · ν‖H1/2(ΓI )
.

Then, by Céa’s lemma, we have

‖ϕ− ϕh‖H1/2(ΓI )
≤ C‖ϕ− ϕI‖H1/2(ΓI )

≤ Chs
J∑

j=1

‖f · ν‖H1/2(ΓI)
≤ Chs‖f‖H1(ΩS )2 .

Proceeding in the same way we obtain an analogous estimate for ‖ξ − ξh‖H1/2(ΓI )
; namely,

‖ξ − ξh‖H1/2(ΓI )
≤ Chs‖g‖H1(ΩS )2 .

Hence, (3.5) follows from these two estimates and (3.7).
On the other hand, to prove (3.4), we use (3.6), the estimate above, and (3.8) to obtain

|b(f , g) − bh(f , g)| ≤ C‖ξ − ξh‖H1/2(ΓI )
‖ϕ‖H1/2(ΓI )

≤ Chs‖g‖H1(ΩS )2 |f |,

which completes the proof. �
Remark 3.2. The constant s ∈

(
1
2 , 1

]
of the previous lemma is s = 1, if ΩF is convex, and any s < π

θ , with θ
being the largest reentrant angle of ΩF , otherwise (see [11]).
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Lemma 3.3. Let u ∈ V ∩ H1+t(ΩS)2, with t ∈ (0, 1]. Then, there exists û ∈ Vh and a constant C > 0,
independent of u, such that

‖u − û‖H1(ΩS )2 ≤ Cht‖u‖H1+t(ΩS )2 .

Proof. Since u ∈ H1+t(ΩS)2 with t > 0, its Lagrange interpolant uI ∈ Vh is well defined and satisfies

‖u − uI‖H1(ΩS )2 ≤ Cht‖u‖H1+t(ΩS )2 .

However, in general,
∫

∂ΩS
uI · ν ds �=

∫
∂ΩS

u · ν ds. Then we define û := uI − cu0, where u0 is a fixed vector

field in Lh(ΩS)2 satisfying u0|ΓD
= 0 and

∫
ΓI

u0 ·ν ds = 1, and c is chosen such that
∫
ΓI

û ·ν ds = 0 holds true;
namely,

c =
∫

ΓI

uI · ν ds.

Therefore
‖u − û‖H1(ΩS )2 ≤ ‖u − uI‖H1(ΩS )2 + ‖cu0‖H1(ΩS )2 .

Now, since
∫
ΓI

u · ν ds = 0 because u ∈ V , we obtain

‖cu0‖H1(ΩS )2 = |c| ‖u0‖H1(ΩS )2 =

∣∣∣∣∣
∫

ΓI

(uI · ν − u · ν) ds

∣∣∣∣∣ ‖u0‖H1(ΩS )2

≤ C‖uI · ν − u · ν‖L2(ΓI )
≤ Chmin{1, 1

2+t}‖u · ν‖H1/2+t(ΓI)
≤ Cht‖u‖H1+t(ΩS )2 .

Thus, we conclude the proof from the three estimates above. �
As a consequence of the last two lemmas, we can prove now the convergence in norm of the discrete operators.

Lemma 3.4. Let T and Th be the operators defined by (2.20) and (3.3), respectively. Then, there exists a
constant C > 0, such that

‖(T − Th)f‖H1(ΩS )2 ≤ Cht‖f‖H1(ΩS )2 ∀f ∈ V,
where t ∈ (0, 1] is as in Lemma 2.8.

Proof. For f ∈ V, let u = Tf and uh = Thf . From Strang’s lemma (see, for instance, [7]) there holds

‖u − uh‖H1(ΩS )2 ≤ C

[
inf

û∈Vh

‖u − û‖H1(ΩS )2 + sup
vh∈Vh

|b(f ,vh) − bh(f ,vh)|
‖vh‖H1(ΩS )2

]
·

Therefore, the result follows from (3.5), Lemmas 3.3 and 2.8, and the inequalities |f | ≤ C‖f‖H1(ΩS )2 and
t ≤ 1 < 2s. �
Remark 3.5. The following estimate, which will be used in Theorem 3.7 below, is obtained by using (3.4)
instead of (3.5) in the proof of the previous lemma:

‖(T − Th)f‖H1(ΩS )2 ≤ Chmin{s,t} |f | ∀f ∈ V.

From the above lemma we know that Th converges to T in H1(ΩS)2 norm and, consequently, the isolated parts
of the spectrum of T are approximated by isolated parts of the spectrum of Th. In other words, given any
eigenvalue λ of T of multiplicity m, there are exactly m eigenvalues λ(1)

h , . . . , λ
(m)
h of Th (repeated according to

their respective multiplicities) converging to λ as h goes to zero.
Let λ be a positive fixed eigenvalue of T of multiplicitym and let E be its associated eigenspace. Let Eh denote

the direct sum of the corresponding eigenspaces of the m eigenvalues λ(1)
h , . . . , λ

(m)
h of Th that converge to λ.
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Thus, by applying the spectral approximation theory for compact operators as stated in [2] (Th. 7.1) and by
using the previous lemma we obtain the following error estimates:

Theorem 3.6. There exists a strictly positive constant C, independent of h, such that

inf
vh∈Eh

‖u − vh‖H1(ΩS )2 ≤ Cht‖u‖H1(ΩS )2 ∀u ∈ E ,

and
inf
v∈E

‖uh − v‖H1(ΩS )2 ≤ Cht‖uh‖H1(ΩS )2 ∀uh ∈ Eh,

where t ∈ (0, 1] is as in Lemma 2.8.

Now, let H denote the Hilbert space obtained as the completion of V with respect to the norm | · |. Then
(V , ‖ · ‖) is continuously and densely included in (H, | · |). Thus, T can be uniquely extended to H and this
extension is also self-adjoint with respect to b. Analogously, we can extend Th to H, which, however, does not
become self-adjoint with respect to b. In fact, let us call T ∗

h its adjoint with respect to this inner product, i.e.,

b(T ∗
hv,w) = b(v, Thw) ∀v,w ∈ H.

Hence, we have
b(T ∗

hv,w) = a(Tv, Thw) ∀v,w ∈ H,

whereas
b(Thv,w) = b(w, Thv) = a(Tw, Thv) = a(Thv, Tw) ∀v,w ∈ H,

which, in general, do not coincide. Nevertheless, a larger order of convergence can be proved for the approxi-
mation of the eigenvalues:

Theorem 3.7. There exists a strictly positive constant C, independent of h, such that∣∣∣λ− λ
(i)
h

∣∣∣ ≤ Ch2r, i = 1, . . . ,m,

where r := min {s, t}, with s ∈
(

1
2 , 1

]
as in Remark 3.2 and t ∈ (0, 1] as in Lemma 2.8.

Proof. By applying Theorem 7.3 in [2] to our situation, we obtain

∣∣∣λ− λ
(i)
h

∣∣∣ ≤ C


 sup

f∈E
|f |=1

sup
g∈E
|g|=1

∣∣b((T − Th)f , g
)∣∣+ ∣∣(T − Th)|E

∣∣ ∣∣(T − T ∗
h )|E

∣∣

 , i = 1, . . . ,m. (3.9)

Let f , g ∈ E and let

u = Tf ∈ V , v = Tg ∈ V, uh = Thf ∈ Vh, and vh = Thg ∈ Vh.

Note that, for f ∈ E , u = Tf = λf , then f = 1
λu and, by Lemma 2.8,

‖f‖H1(ΩS )2 ≤ ‖f‖H1+t(ΩS )2 =
1
λ
‖u‖H1+t(ΩS )2 ≤ C |f | . (3.10)

Analogously, for g ∈ E, ‖g‖H1(ΩS )2 ≤ C |g|.
Now, for the first term in the right-hand side of (3.9), we have

b
(
(T − Th)f , g

)
= b(u − uh, g) = a(u − uh,v) = a(u − uh,v − vh) + a(u − uh,vh).
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From Lemma 3.4,

a(u − uh,v − vh) ≤ C‖u − uh‖H1(ΩS )2‖v − vh‖H1(ΩS )2 ≤ Ch2t‖f‖H1(ΩS )2‖g‖H1(ΩS )2

and, consequently,
a(u − uh,v − vh) ≤ Ch2t |f | |g| .

On the other hand, from (3.5),

a(u − uh,vh) = b(f ,vh) − bh(f ,vh) ≤ Ch2s‖f‖H1(ΩS )2‖vh‖H1(ΩS )2 .

Now, since from Lemma 3.4,

‖vh‖H1(ΩS )2 ≤ ‖v‖H1(ΩS )2 + ‖v − vh‖H1(ΩS )2 ≤ C‖g‖H1(ΩS )2 + Cht‖g‖H1(ΩS )2 ≤ C‖g‖H1(ΩS )2 ,

there holds
a(u − uh,vh) ≤ Ch2s |f | |g| .

Hence,
sup
f∈E
|f |=1

sup
g∈E
|g|=1

∣∣b((T − Th)f , g
)∣∣ ≤ Chmin{2s,2t}.

For the second term in the right-hand side of (3.9) we have
∣∣(T − Th)|E

∣∣ ≤ Chmin{s,t}. Indeed, from Lemma 3.4,
for f ∈ E we have

|(T − Th)f | ≤ C‖(T − Th)f‖H1(ΩS )2 ≤ Cht‖f‖H1(ΩS )2 ≤ Cht |f | .

To conclude the theorem, we have to estimate the term
∣∣(T − T ∗

h )|E
∣∣. Since V is dense in H, we have

∣∣(T − T ∗
h )|E

∣∣ = sup
g∈E
|g|=1

|(T − T ∗
h )g| = sup

g∈E
|g|=1

sup
f̃∈V
|f̃|=1

b
(
(T − T ∗

h )g, f̃
)

= sup
g∈E
|g|=1

sup
f̃∈V
|f̃ |=1

b
(
(T − Th)f̃ , g

)
.

Let g ∈ E and f̃ ∈ V. We proceed as above, but taking into account that (3.10) does not necessarily hold for
f̃ /∈ E. Then, we use Remark 3.5 instead of Lemma 3.4 for f̃ and (3.4) instead of (3.5). Thus, we obtain

b
(
(T − Th)f̃ , g

)
≤ Chmin{s,2t}∣∣f̃ ∣∣‖g‖H1(ΩS )2 ≤ Chmin{s,2t}∣∣f̃ ∣∣ |g| .

Then,
∣∣(T − T ∗

h )|E
∣∣ ≤ Chmin{s,t}, which together with the estimates of the other two terms allow us to conclude

the proof. �

4. Numerical results

We begin by providing an equivalent formulation of problem (3.1)–(3.2) which avoids imposing the constraint∫
ΓI

vh · ν ds = 0 on the space Vh. In fact, let Wh and Ph be the spaces defined by

Wh :=
{
vh ∈ Lh(ΩS)2 : vh|ΓD

= 0
}

and
Ph := Lh(ΓI).
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Then, proceeding similarly as in the proof of Lemma 2.4 one can show that (3.1)–(3.2) is equivalent to the
following problem:

Find ωh ≥ 0 and 0 �= (uh, ϕh) ∈ Wh × Ph such that

∫
ΩS

σ(uh) : ε(vh) dx = ω2
h

[∫
ΩS

ρSuh · vh dx+ ρF 〈V (uh · ν),vh · ν〉 + ρF

〈(
1
2
I −K

)
ϕh,vh · ν

〉]

∀vh ∈ Wh

and

〈ψh,Wϕh〉 =
〈(

1
2
I −K

)
ψh,uh · ν

〉
∀ψh ∈ Ph.

To obtain a symmetric form of this problem, we add the second equation times ω2
hρF to the first one. Thus we

obtain the following formulation which is clearly equivalent to the previous one for ωh �= 0:

Find ωh ≥ 0 and 0 �= (uh, ϕh) ∈ Wh × Ph such that

∫
ΩS

σ(uh) : ε(vh) dx = ω2
h

[∫
ΩS

ρSuh · vh dx+ ρF 〈V (uh · ν),vh · ν〉 + ρF

〈(
1
2
I −K

)
ϕh,vh · ν

〉

+ ρF

〈(
1
2
I −K

)
ψh,uh · ν

〉
− ρF 〈ψh,Wϕh〉

]
∀(vh, ψh) ∈ Wh × Ph. (4.1)

Let {u1, . . . ,un} and {ϕ1, . . . , ϕm} be bases of Wh and Ph, respectively. For uh ∈ Wh and ϕh ∈ Ph, let
β1, . . . , βn and γ1, . . . , γm be scalars such that

uh =
n∑

i=1

βiui and ϕh =
m∑

k=1

γkϕk.

Let

A :=
(
aij

)
∈ R

n×n, with aij :=
∫

ΩS

σ(ui) : ε(uj) dx, i, j = 1, . . . , n,

B :=
(
bij

)
∈ R

n×n, with bij :=
∫

ΩS

ρSui · uj dx+ ρF 〈V (ui · ν),uj · ν〉 , i, j = 1, . . . , n,

C :=
(
ckj

)
∈ R

m×n, with ckj := ρF

〈(
1
2
I −K

)
ϕk,uj · ν

〉
, k = 1, . . . ,m, j = 1, . . . , n,

D :=
(
dkl

)
∈ R

m×m, with dkl := ρF

〈
V ϕ̇k, ψ̇l

〉
, k, l = 1, . . . ,m,

where, to avoid computing the integrals involving the hypersingular layer potential, for the entries of the last
matrix we have used the following identity (see e.g. [10]):

〈ψ,Wϕ〉 =
〈
V ϕ̇, ψ̇

〉
∀ϕ, ψ ∈ H1/2(ΓI),

where the dot denotes the tangential derivative along ΓI .
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Figure 2. Geometrical data. Figure 3. Initial mesh (N = 1).

Then the matrix form of the discrete problem (4.1) is the following:

Find ωh ≥ 0, β = (β1, . . . , βn) ∈ R
n, and γ = (γ1, . . . , γm) ∈ R

m, with (β,γ) �= 0, such that(
A 0
0 0

)(
β
γ

)
= ω2

h

(
B C
Ct −D

)(
β
γ

)
. (4.2)

This is a generalized eigenvalue problem involving symmetric matrices

A :=
(
A 0
0 0

)
and B :=

(
B C
Ct −D

)
.

To end this section, we report the results of a numerical test computed with the coupled BEM/FEM method
described above (see [22] for more details). This test has been performed with a MATLAB� code that we have
developed, in which we have used the MATLAB command sptarn to solve the algebraic eigenvalue problem (4.2).
This eigensolver is based on Arnoldi method with restarting, applied to the symmetric pencil A − σB.

The double integrals in the BEM terms arising in matrices B, C, and D have been computed with a software
described in [9]. It is based on using a highly accurate quadrature formula for the outer integrals, combined
with analytical integration for the inner ones. See [9] for details.

We have chosen a test example which consists of a closed steel vessel completely filled by an incompressible
liquid. The geometrical data can be seen in Figure 2.

We have used the following physical parameters, which correspond to steel and water:
• solid density: ρS = 7700 kg/m3;
• Young modulus: ES = 1.44 1011 Pa;
• Poisson coefficient: νS = 0.35;
• fluid density: ρF = 1000 kg/m3.

We have used several meshes which are successive uniform refinements of the coarse initial triangulation shown
in Figure 3. The refinement parameter N is the number of element layers across the thickness of the solid
(N = 1 for the mesh in Fig. 3).

Table 1 shows the frequencies of the lowest-frequency hydroelastic vibration modes of the fluid-solid coupled
system computed on several meshes. The table also includes more accurate values obtained by extrapolation, as
well as the computed convergence rates. Finally, we report in the last column the corresponding extrapolated
values obtained with the finite element method in [6]. The last two columns show that the agreement between
both methods is excellent.



670 M.A. BARRIENTOS ET AL.

Table 1. Frequencies (in rad/s) of the lowest-frequency hydroelastic vibration modes.

Mode N = 6 N = 7 N = 8 N = 9 N = 10 Rate Extrapol. Extrapol. [6]

1 729.087 715.485 706.136 699.399 694.359 1.60 666.995 666.401
2 2397.609 2372.312 2355.008 2342.639 2333.479 1.66 2285.324 2285.811
3 4039.499 3991.105 3957.060 3932.129 3913.261 1.47 3799.831 3799.823
4 4568.021 4556.431 4548.289 4542.284 4537.689 1.43 4509.573 4509.499
5 5470.491 5444.295 5426.390 5413.570 5404.047 1.65 5353.859 5353.978
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Figure 4. Error curves of the computed frequencies: log-log plot of relative error versus d.o.f.

The computed convergence rates are slightly better than those predicted by the theory. Indeed, the fluid
domain is convex in this experiment, and hence s = 1. On the other hand, the value of t is determined by the
strongest singularity of the elasticity equations on the domain ΩS . In this case this happens at the external
Dirichlet-Neumann π

2 corners which, for νS = 0.35, is t ≈ 0.68 (see [11]). Thus, according to Theorem 3.7 the
order of convergence should be about 1.36. The reason why the experimental convergence rates are slightly
better is that the computed vibration frequencies are yet in a preasymptotic range (see [1] where a similar
experimental behavior is reported in the case of compressible fluids).

Figure 4 shows the error curve of each vibration mode; namely, a log-log plot of the relative error of the
computed frequencies versus the number of degrees of freedom (d.o.f.) of the used mesh. The extrapolated
frequencies have been used as “exact” to compute these errors.

Finally, Figures 5 to 9 show the solid deformation amplitudes obtained with the coarsest meshes for each
vibration mode.
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Figure 5. Solid deformation amplitude.
First vibration mode. Mesh: N = 6.

Figure 6. Solid deformation amplitude.
Second vibration mode. Mesh: N = 6.

Figure 7. Solid deformation amplitude.
Third vibration mode. Mesh: N = 6.

Figure 8. Solid deformation amplitude.
Fourth vibration mode. Mesh: N = 6.

Figure 9. Solid deformation amplitude.
Fifth vibration mode. Mesh: N = 6.



672 M.A. BARRIENTOS ET AL.

Acknowledgements. The authors thank Norbert Heuer for providing the software to compute the terms involving the
boundary integral operators.

References

[1] A. Alonso, A. Dello Russo, C. Otero-Souto, C. Padra and R. Rodŕıguez, An adaptive finite element scheme to solve fluid-
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