Crack detection using electrostatic measurements
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 35 (2001) no. 3, p. 595-605

In this paper we extend recent work on the detection of inclusions using electrostatic measurements to the problem of crack detection in a two-dimensional object. As in the inclusion case our method is based on a factorization of the difference between two Neumann-Dirichlet operators. The factorization possible in the case of cracks is much simpler than that for inclusions and the analysis is greatly simplified. However, the directional information carried by the crack makes the practical implementation of our algorithm more computationally demanding.

Classification:  35R30,  31A25
Keywords: inverse boundary value problem, nondestructive testing, crack
@article{M2AN_2001__35_3_595_0,
     author = {Br\"uhl, Martin and Hanke, Martin and Pidcock, Michael},
     title = {Crack detection using electrostatic measurements},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {35},
     number = {3},
     year = {2001},
     pages = {595-605},
     zbl = {0985.35103},
     mrnumber = {1837086},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2001__35_3_595_0}
}
Brühl, Martin; Hanke, Martin; Pidcock, Michael. Crack detection using electrostatic measurements. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 35 (2001) no. 3, pp. 595-605. http://www.numdam.org/item/M2AN_2001__35_3_595_0/

[1] G. Alessandrini and A. Diaz Valenzuela, Unique determination of multiple cracks by two measurements. SIAM J. Control Optim. 34 (1996) 913-921. | Zbl 0864.35115

[2] M. Brühl, Explicit characterization of inclusions in electrical impedance tomography. SIAM J. Math. Anal. 32 (2001) 1327-1341. | Zbl 0980.35170

[3] M. Brühl and M. Hanke, Numerical implementation of two noniterative methods for locating inclusions by impedance tomography. Inverse Problems 16 (2000) 1029-1042. | Zbl 0955.35076

[4] K. Bryan and M. Vogelius, A computational algorithm to determine crack locations from electrostatic boundary measurements. The case of multiple cracks. Internat. J. Engrg. Sci. 32 (1994) 579-603. | Zbl 0924.73179

[5] H. W. Engl, M. Hanke and A. Neubauer, Regularization of inverse problems. Kluwer, Dordrecht (1996). | MR 1408680 | Zbl 0859.65054

[6] A. Friedman and M. Vogelius, Determining cracks by boundary measurements. Indiana Univ. Math. J. 38 (1989) 527-556. | Zbl 0697.35165

[7] H. Kim and J. K. Seo, Unique determination of a collection of a finite number of cracks from two boundary measurements. SIAM J. Math. Anal. 27 (1996) 1336-1340. | Zbl 0859.35138

[8] A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator. Inverse Problems 14 (1998) 1489-1512. | Zbl 0919.35147

[9] A. Kirsch and S. Ritter, A linear sampling method for inverse scattering from an open arc. Inverse Problems 16 (2000) 89-105. | Zbl 0968.35129

[10] R. Kreß, Linear integral equations. 2nd edn., Springer, New York (1999).

[11] C. Miranda, Partial differential equations of elliptic type. 2nd edn., Springer, Berlin (1970). | MR 284700 | Zbl 0198.14101

[12] L. Mönch, On the numerical solution of the direct scattering problem for an open sound-hard arc. J. Comput. Appl. Math. 71 (1996) 343-356. | Zbl 0854.65106

[13] N. Nishimura and S. Kobayashi, A boundary integral equation method for an inverse problem related to crack detection. Internat. J. Numer. Methods Engrg. 32 (1991) 1371-1387. | Zbl 0760.73072

[14] F. Santosa and M. Vogelius, A computational algorithm to determine cracks from electrostatic boundary measurements. Internat. J. Engrg. Sci. 29 (1991) 917-937. | Zbl 0825.73761