@article{M2AN_2000__34_6_1259_0,
author = {Kurganov, Alexander and Petrova, Guergana},
title = {Central schemes and contact discontinuities},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {1259--1275},
year = {2000},
publisher = {Dunod},
volume = {34},
number = {6},
mrnumber = {1812736},
zbl = {0972.65055},
language = {en},
url = {https://www.numdam.org/item/M2AN_2000__34_6_1259_0/}
}
TY - JOUR AU - Kurganov, Alexander AU - Petrova, Guergana TI - Central schemes and contact discontinuities JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 1259 EP - 1275 VL - 34 IS - 6 PB - Dunod UR - https://www.numdam.org/item/M2AN_2000__34_6_1259_0/ LA - en ID - M2AN_2000__34_6_1259_0 ER -
Kurganov, Alexander; Petrova, Guergana. Central schemes and contact discontinuities. ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 6, pp. 1259-1275. https://www.numdam.org/item/M2AN_2000__34_6_1259_0/
[1] and , Généralisation du schéma de Nessyahu-Tadmor pour une équation hyperbolique à deux dimensions d'espace. C.R. Acad. Sci. Paris Sér. 1320 (1995) 85-88. | Zbl | MR
[2] , and , A finite volume extension of the Lax-Friedrichs and Nessyahu-Tadmor schemes for conservation laws on unstructured grids. Int. J. Comput. Fluid Dyn. 9 (1997) 1-22. | Zbl | MR
[3] , and , High order central schemes for hyperbolic systems of conservation laws. SIAM J. Sci. Comput. 21 (1999) 294-322. | Zbl | MR
[4] , On Godunov-type methods for gas dynamics. SIAM J. Numer, Anal. 25 (1988) 294-318. | Zbl | MR
[5] , Symmetric hyperbolic linear differential equations. Comm. Pure Appl. Math. 7 (1954) 345-392. | Zbl | MR
[6] , The artificial compression method for computation of shocks and contact discontinuities. III. Self-adjusting hybrid schemes. Math. Comp. 32 (1978) 363-389. | Zbl | MR
[7] , High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49 (1983) 357-393. | Zbl | MR
[8] , , and , Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput Phys. 71 (1987) 231-303. | Zbl | MR
[9] and , Non-oscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 19 (1998) 1892-1917. | Zbl | MR
[10] , Conservation laws: stability of numerical approximations and nonlinear regularization. Ph.D. thesis, Tel-Aviv University, Israel (1997).
[11] and , A third-order semi-discrete central scheme for conservation laws and convection-diffusion equations. SIAM J. Sci. Comput. (to appear). | Zbl | MR
[12] and , A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems. Numer. Math, (to appear). | Zbl | MR
[13] , and , Semi-Discrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations. SIAM J. Sci. Comput. (submitted). | Zbl
[14] and , New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160 (2000) 241-282. | Zbl | MR
[15] , Weak solutions of nonlinear hyperbolic equations and their numerical computation. Comm. Pure Appl. Math. 7 (1954) 159-193. | Zbl | MR
[16] , Towards the ultimate conservative diffrence scheme. V. A second order sequel to Godunov's method. J. Comput. Phys. 32 (1979) 101-136. | Zbl | MR
[17] , and , Central WENO schemes for hyperbolic Systems of conservation laws. ESAIM: M2AN 33 (1999) 547-571. | Zbl | MR | Numdam
[18] , and , A third order central WENO scheme for 2D conservation laws. Appl. Numer. Math. 33 (2000) 407-414. | Zbl | MR
[19] , and , Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22 (2000) 656-672. | Zbl | MR
[20] and , Remarks on high-resolution non-oscillatory central schemes for multi-dimensional systems of conservation laws. Part I: An improved quadrature rule for the flux-computation. SIAM J. Sci. Comput. (submitted).
[21] and , Third order nonoscillatory central scheme for hyperbolic conservation laws. Numer. Math. 79 (1998) 397-425. | Zbl | MR
[22] and , Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 408-463. | Zbl | MR
[23] and , On the convergence of difference approximations to scalar conservation laws. Math. Comp. 50 (1988) 19-51. | Zbl | MR
[24] and , A high order staggered grid method for hyperbolic systems of conservation laws in one space dimension. Comput. Methods Appl. Mech. Engrg. 75 (1989) 91-107. | Zbl | MR
[25] and , High resolution staggered mesh approach for nonlinear hyperbolic Systems of conservation laws. J. Comput Phys. 101 (1992) 314-329. | Zbl | MR
[26] and , The numerical solution of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54 (1988) 115-173. | Zbl | MR





