@article{M2AN_1999__33_3_547_0,
author = {Levy, Doron and Puppo, Gabriella and Russo, Giovanni},
title = {Central {WENO} schemes for hyperbolic systems of conservation laws},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {547--571},
year = {1999},
publisher = {EDP Sciences},
volume = {33},
number = {3},
mrnumber = {1713238},
zbl = {0938.65110},
language = {en},
url = {https://www.numdam.org/item/M2AN_1999__33_3_547_0/}
}
TY - JOUR AU - Levy, Doron AU - Puppo, Gabriella AU - Russo, Giovanni TI - Central WENO schemes for hyperbolic systems of conservation laws JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1999 SP - 547 EP - 571 VL - 33 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/item/M2AN_1999__33_3_547_0/ LA - en ID - M2AN_1999__33_3_547_0 ER -
%0 Journal Article %A Levy, Doron %A Puppo, Gabriella %A Russo, Giovanni %T Central WENO schemes for hyperbolic systems of conservation laws %J ESAIM: Modélisation mathématique et analyse numérique %D 1999 %P 547-571 %V 33 %N 3 %I EDP Sciences %U https://www.numdam.org/item/M2AN_1999__33_3_547_0/ %G en %F M2AN_1999__33_3_547_0
Levy, Doron; Puppo, Gabriella; Russo, Giovanni. Central WENO schemes for hyperbolic systems of conservation laws. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 3, pp. 547-571. https://www.numdam.org/item/M2AN_1999__33_3_547_0/
[1] , and , A Two-Dimensional Finite Volume Extension of the Lax-Friedrichs and Nessyahu-Tadmor Schemes for Compressible Flows, in Proc. 6th Int. Symp. on CFD, Lake Tahoe, Vol. IV. M. Hafez and K. Oshima Eds. (1995) 7-14.
[2] and , Généralisation du schéma de Nessyahu-Tadmor pour une équation hyperbolique à deux dimensions d'espace. C.R. Acad. Sci. (Paris) Ser. I. Math. 320 (1995) 85-88. | Zbl | MR
[3] , and , A Finite Volume Extension of the Lax-Friedrichs and Nessyahu-Tadmor Schemes for Conservation Laws on Unstructured Grids. IJCFD 9 (1997) 1-22. | Zbl | MR
[4] , , and , Discontinuous Finite Elements and Finite Volume Versions of the Lax-Friedrichs and Nessyahu-Tadmor Schemes for Compressible Flows on Unstructured Grids. Computational Fluid Dynamics Review M. Hafez and K. Oshima Eds., Wiley (1997).
[5] , and , High Order Central Schemes for Hyperbolic Systems of Conservation Laws. SIAM J. Sci. Comp. (to appear.). | Zbl | MR
[6] and , Systems of Conservation Equations with a Convex Extension. Proc Nat. Acad. Sci. 68 (1971) 1686-1688. | Zbl | MR
[7] and , Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, New York (1996). | Zbl | MR
[8] , , and , Uniformly High Order Accurate Essentially Non-oscillatory Schemes III. JCP 71 (1987) 231-303. | Zbl | MR
[9] , A Piecewise-parabolic Dual-mesh Method for the Euler Equations. AIAA-95-1739-CP, The 12th AIAA CFD conference (1995).
[10] , , , and , High-Resolution Non-Oscillatory Central Schemes with Non-Staggered Grids for Hyperbolic Conservation Laws. SINUM 35 (1998) 2147-2168. | Zbl | MR
[11] and , Efficient Implementation of Weighted ENO Schemes. JCP 126 (1996) 202-228. | Zbl | MR
[12] and , Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws. SIAM J. Sci. Comp. 19 (1998) 1892-1917. | Zbl | MR
[13] and , The Relaxation Schemes for Systems of Conservation Laws in Arbitrary Space Dimensions.CPAM 48 (1995) 235-277. | Zbl | MR
[14] , Weak Solutions of Non-Linear Hyperbolic Equations and Their Numerical Computation. CPAM 7 (1954) 159-193. | Zbl | MR
[15] , Towards the Ultimate Conservative Difference Scheme, V. A. Second-Order Sequel to Godunov's Method. JCP 32 (1979) 101-136. | Zbl
[16] , Numerical Methods for Conservation Laws. Lectures in Mathematics, Birkhauser Verlag, Basel (1992). | Zbl
[17] , A Third-order 2D Central Schemes for Conservation Laws, Vol. I. INRIA School on Hyperbolic Systems (1998) 489-504.
[18] , and , Central WENO Schemes for Multi-Dimensional Hyperbolic Systems of Conservation Laws (in preparation).
[19] and , Non-oscillatory Central Schemes for the Incompressible 2-D Euler Equations. Math. Res. Lett. 4 (1997) 1-20. | Zbl | MR
[20] and , Nonoscillatory High Order Accurate Self-Similar Maximum Principle Satisfying Shock Capturing Schemes I. SINUM 33 (1996) 760-779. | Zbl | MR
[21] , and , Weighted Essentially Non-oscillatory Schemes. JCP 115 (1994) 200-212. | Zbl | MR
[22] and , Third Order Nonoscillatory Central Scheme for Hyperbolic Conservation Laws.Numer Math. 79 (1998) 397-425. | Zbl | MR
[23] and , Non-oscillatory Central Differencing for Hyperbolic Conservation Laws. JCP 87 (1990) 408-463. | Zbl | MR
[24] , Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes. JCP 43 (1981) 357-372. | Zbl | MR
[25] and , A High Resolution Staggered Mesh Approach for Nonlinear Hyperbolic Systems of Conservation Laws. JCP 1010 (1992) 314-329. | Zbl | MR
[26] , Numerical experiments on the accuracy of ENO and modified ENO schemes. J. Sci. Comp 5 (1990) 127-149. | Zbl
[27] and , Efficient Implementation of Essentially Non-Oscillatory Shoek-Capturing Schemes, II. JCP 83 (1989) 32-78. | Zbl | MR
[28] , A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws. JCP 22 (1978) 1-31. | Zbl | MR
[29] , High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws. SINUM 21 (1984) 995-1011. | Zbl | MR
[30] , Approximate Solutions of Nonlinear Conservation Laws. CIME Lecture notes (1997), UCLA CAM Report 97-51. | Zbl | MR
[31] and , The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks. JCP 54 (1984) 115-173. | Zbl | MR
[32] , An Artificial Compression Method for ENO schemes : the SLOpe Modification Method. JCP 89 (1990) 125-160. | Zbl | MR
[33] , Natural Continuous Extensions of Runge-Kutta Methods. Math. Comp. 46 (1986) 119-133. | Zbl | MR






