Approximation of parabolic equations using the Wasserstein metric
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 33 (1999) no. 4, p. 837-852
@article{M2AN_1999__33_4_837_0,
     author = {Kinderlehrer, David and Walkington, Noel J.},
     title = {Approximation of parabolic equations using the Wasserstein metric},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {33},
     number = {4},
     year = {1999},
     pages = {837-852},
     zbl = {0936.65121},
     mrnumber = {1726488},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1999__33_4_837_0}
}
Kinderlehrer, David; Walkington, Noel J. Approximation of parabolic equations using the Wasserstein metric. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 33 (1999) no. 4, pp. 837-852. http://www.numdam.org/item/M2AN_1999__33_4_837_0/

[1] J. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Preprint (1998). | Zbl 0968.76069

[2] J. Benamou and Y. Brenier, Weak existence for the semigeostrophic equations formulated as a coupled Monge-Ampere transport problem. SIAM J. AppL Math. 58 (1998) 1450-1461. | MR 1627555 | Zbl 0915.35024

[3] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44 (1991)375-417. | MR 1100809 | Zbl 0738.46011

[4] P.G. Ciarlet, Introduction to Numerical Linear Algebra and Optimisation. Cambridge University Press, Cambridge (1988). | MR 1015713 | Zbl 0672.65001

[5] W.E. and F. Otto, Thermodynamically driven incompressible fluid mixtures. J. Chem. Phys. 107 (1998) 10177-10184. | Zbl 1110.76307

[6] M. Frechet, Sur la distance de deux lois de probabilité. C.R. Acad. Sci. 244 (1957) 689-692. | MR 83210 | Zbl 0077.33007

[7] W. Gangbo and A. Sweich, Optimal maps for the multidimensional Monge-Kantorovich problem. CPAM 51 (1998) 23-45. | MR 1486630 | Zbl 0889.49030

[8] W. Gango and R.J. Mccann, The geometry of optimal transportation. Acta Math, 177 (1996) 113-161. | MR 1440931 | Zbl 0887.49017

[9] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck équation. SIAM J. Math. Anal. 29 (1998) 1-17. | MR 1617171 | Zbl 0915.35120

[10] R. Jordan, D. Kinderlehrer and F. Otto, Dynamics of the Fokker-Planck equation. Phase Transitions (to appear).

[11] E.H. Lieb and M. Loss, Analysis, Vol. 14 of Graduate Studies in Mathematics. AMS (1997). | MR 1415616 | Zbl 0873.26002

[12] F. Otto, Dynamics of labyrinthine pattern formation in magnetic fluids. Arch. Rational Mech. Anal. 141 (1998) 63-103. | MR 1613500 | Zbl 0905.35068

[13] N.G. Van Kampen, Stochastic Processes in Physics and Chemistry. North-Holland (1981). | MR 648937 | Zbl 0511.60038