Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 33 (1999) no. 4, p. 747-770
@article{M2AN_1999__33_4_747_0,
     author = {Douglas, Jim Jr. and Santos, Juan E. and Sheen, Dongwoo and Ye, Xiu},
     title = {Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {33},
     number = {4},
     year = {1999},
     pages = {747-770},
     zbl = {0941.65115},
     mrnumber = {1726483},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1999__33_4_747_0}
}
Douglas, Jim Jr.; Santos, Juan E.; Sheen, Dongwoo; Ye, Xiu. Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 33 (1999) no. 4, pp. 747-770. http://www.numdam.org/item/M2AN_1999__33_4_747_0/

[1] D.N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Model. Math. Anal. Numér. 19 (1985) 7-32. | Numdam | MR 813687 | Zbl 0567.65078

[2] J.-P. Aubin, Approximation of Elliptic Boundary-Value Problems. Wiley-Interscience, New York (1972). | MR 478662 | Zbl 0248.65063

[3] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994). | MR 1278258 | Zbl 0804.65101

[4] P.G. Ciarlet. The Finite Element Method for Elliptic Equations. North-Holland, Amsterdam (1978). | MR 520174

[5] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér. (déc. 1973) 33-75. | Numdam | MR 343661 | Zbl 0302.65087

[6] B. Després, Methodes de décomposition de domaines pour les problèmes de propagation d'ondes en régime harmonique. Ph.D. thesis, University of Paris IX Dauphine, France (1991). | Zbl 0849.65085

[7] J. Jr. Douglas, P.J. Paes Leme, J.E. Roberts and J. Wang, A parallel iterative procedure applicable to the approximate solution of second order partial differential equations by mixed finite element methods. Numer. Math. 65 (1993) 95-108. | MR 1217441 | Zbl 0813.65122

[8] P. Lascaux and P. Lesaint, Some non-conforming finite elements for the plate bending problem. RAIRO Anal. Numér. 9 (1975) 9-53. | Numdam | MR 423968 | Zbl 0319.73042

[9] P.L. Lions. On the Schwarz alternating method, in Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, G. Golub, G. Meurant and J. Periaux Eds. SIAM, Philadelphia (1988) 1-42. | MR 972510 | Zbl 0658.65090

[10] P.L. Lions. On the Schwarz alternating method III: a variant for nonoverlapping subdomains, in Domain Decomposition Methods for Partial Differential Equations, T.F. Chan, R. Glowinski, J. Periaux and O. B. Widlund Eds., SIAM, Philadelphia (1990) 202-223. | MR 1064345 | Zbl 0704.65090

[11] R. Rannacher and S. Turek, Simple nonconforming quadrilatéral Stokes element. Numer. Methods Partial Differential Equations 8 (1992) 97-111. | MR 1148797 | Zbl 0742.76051

[12] G. Strang, Variational crimes in the finite element method, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A.K. Aziz Ed., Academie Press, New York (1972) 689-710. | MR 413554 | Zbl 0264.65068

[13] G. Strang and G.J. Fix, An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973). | MR 443377 | Zbl 0356.65096