@article{M2AN_1999__33_2_329_0, author = {Castella, Fran\c{c}ois}, title = {On the derivation of a quantum {Boltzmann} equation from the periodic {Von-Neumann} equation}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {329--349}, publisher = {EDP-Sciences}, volume = {33}, number = {2}, year = {1999}, mrnumber = {1700038}, zbl = {0954.82023}, language = {en}, url = {http://www.numdam.org/item/M2AN_1999__33_2_329_0/} }
TY - JOUR AU - Castella, François TI - On the derivation of a quantum Boltzmann equation from the periodic Von-Neumann equation JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1999 SP - 329 EP - 349 VL - 33 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/item/M2AN_1999__33_2_329_0/ LA - en ID - M2AN_1999__33_2_329_0 ER -
%0 Journal Article %A Castella, François %T On the derivation of a quantum Boltzmann equation from the periodic Von-Neumann equation %J ESAIM: Modélisation mathématique et analyse numérique %D 1999 %P 329-349 %V 33 %N 2 %I EDP-Sciences %U http://www.numdam.org/item/M2AN_1999__33_2_329_0/ %G en %F M2AN_1999__33_2_329_0
Castella, François. On the derivation of a quantum Boltzmann equation from the periodic Von-Neumann equation. ESAIM: Modélisation mathématique et analyse numérique, Volume 33 (1999) no. 2, pp. 329-349. http://www.numdam.org/item/M2AN_1999__33_2_329_0/
[1] Fundamental aspects of Quantum Transport, in Handbook on Semiconductors, T.S. Moss Ed., North-Holland (1982).
,[2] On a hierarchy of macroscopic models for semi-conductors. J. Math. Phys. 37 (1996) 3306-3333. | MR | Zbl
and ,[3] On the distribution of free path lengths for the periodic Lorentz gas. Comm. Math. Phys. 190 (1998) 491-508. | MR | Zbl
, and ,[4] Path Integral Approach to Brownian Motion. Physica A 121 (1983) 587-616. | MR | Zbl
and ,[5] Lecture, University of Paris 6 (1997).
,[6]
, Ph.D. thesis, University of Paris VI, France (1997).[7] The Von-Neumann equation with deterministic potential converges towards the Quantum Boltzmann equation. Preprint (1999).
and ,[8] Caldeira-Leggett Master equation. Work in progress (1999).
, , and ,[9] Mécanique Quantique, I et II, Enseignement des Sciences, Vol. 16. Hermann (1973).
, and ,[10] Linear Boltzmann equation as scaling limit of quantum Lorentz gas. Preprint (1998). | Zbl
and ,[11] The Boltzmann Equation for a one-dimensional Quantum Lorentz gas. Preprint (1998). | Zbl
, and ,[12] On the weak coupling limit for a Fermi gas in a random potential. Rev. Math, Phys,5 (1993) 209-298. | Zbl
, and ,[13] Foundations of Classical and Quantum Statistical Mechanics. Pergamon, Braunschweig (1969).
,[14] Zbl
and , Phys. Rev. 108 (1957) 590-611. |[15] Zbl
and , Phys. Rev. 109 (1958) 1892. |[16] Nonequilibrium thermodynamics and its statistical foundations. Monographs on Physics and Chemistry of Materials. Oxford Science Publications (1983). | MR
,[17] MR
, J. Phys. Soc. Jap. 12 (1957) 570. |[18] Sur les mesures de Wigner. Revista Matematica ibero americana 9 (1993) 553-618. | MR | Zbl
and ,[19] Mathematical Methods in Solid State and Superfluid Theory, Oliver and Boyd Eds. (1968) 157.
,[20] Space homogeneous solutions to the Cauchy problem for the semi-conductor Boltzmann equation. SIAM J. Math. Anal. 28 (1997) 1294-1308. | MR | Zbl
and ,[21] Semiconductor equations. Springer-Verlag, Wien (1990). | MR | Zbl
, and ,[22] The drift-diffus ion limit for electron-phonon interaction in semiconductors. Math. Mod. Meth. Appl. Sci. 7 (1997) 707-729. | MR | Zbl
and ,[23] Global existence of solutions for the non-linear Boltzmann equation of semiconductors physics. Rev. Mat. Iberoam. 6 (1990) 43-59. | MR | Zbl
,[24] Asymptotic Analysis of a scaled Wigner equation and Quantum Scattering. Transp. Theor. Stat. Phys. 24 (1995) 591-629. | MR | Zbl
,[25] A semi-classical picture of quantum scattering. Ann. Sci. Ec. Norm. Sup. 29 (1996) 149-183. | Numdam | MR | Zbl
,[26] Festschrift zum 60 Geburtstage A. Sommerfelds. Hirzel, Leipzig (1928) 30.
,[27] Non-Equilibrium Statistical Mechanics. Interscience, New-York (1962). | MR | Zbl
,[28] Derivation of the transport equation for electrons moving through random impurities. J. Stat. Phys. 17 (1997) 385-412. | MR | Zbl
,[29] Physica 21 (1955) 517-540. | MR | Zbl
,[30] Physica 23 (1957) 441. | MR | Zbl
,[31] Fundamental Problems in Statistical Mechanics, E.G.D. Cohen Ed. (1962) 157.
, in[32] Stochastic processes in physics and chemistry, Lecture Notes in Mathematics. North-Holland 888 (1981). | MR | Zbl
,[33] Quantum Statistical Mechanics, P.H.E. Meijer Ed., Gordon and Breach, New-York (1966).
,