Global BV solutions for a model of multi-species mixture in porous media
ESAIM: Modélisation mathématique et analyse numérique, Volume 32 (1998) no. 7, pp. 877-895.
@article{M2AN_1998__32_7_877_0,
     author = {Amirat, Youcef and Peng, Yue-Jun},
     title = {Global {BV} solutions for a model of multi-species mixture in porous media},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {877--895},
     publisher = {Elsevier},
     volume = {32},
     number = {7},
     year = {1998},
     mrnumber = {1654519},
     zbl = {0912.76087},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1998__32_7_877_0/}
}
TY  - JOUR
AU  - Amirat, Youcef
AU  - Peng, Yue-Jun
TI  - Global BV solutions for a model of multi-species mixture in porous media
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1998
SP  - 877
EP  - 895
VL  - 32
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/item/M2AN_1998__32_7_877_0/
LA  - en
ID  - M2AN_1998__32_7_877_0
ER  - 
%0 Journal Article
%A Amirat, Youcef
%A Peng, Yue-Jun
%T Global BV solutions for a model of multi-species mixture in porous media
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1998
%P 877-895
%V 32
%N 7
%I Elsevier
%U http://www.numdam.org/item/M2AN_1998__32_7_877_0/
%G en
%F M2AN_1998__32_7_877_0
Amirat, Youcef; Peng, Yue-Jun. Global BV solutions for a model of multi-species mixture in porous media. ESAIM: Modélisation mathématique et analyse numérique, Volume 32 (1998) no. 7, pp. 877-895. http://www.numdam.org/item/M2AN_1998__32_7_877_0/

[1] Y. A. Alkhutov and I. T. Mamedov, The first boundary value problem for nondivergence second order parabolic equations with discontinuous coefficients, Amer. Math. Soc, 59, p. 471-495, 1988. | MR | Zbl

[2] Y. Amirat and M. Moussaoui, Analysis of a one-dimensional model for compressible miscible displacement in porous media, SIAM J. Math. Anal. 26-3, p. 659-674, 1995. | MR | Zbl

[3] Y. Amirat, K. Hamdache and A. Ziani, Homogenization of a one-dimensional model for compressible miscible flow in porous media, preprint LMA 94-11, Univ. Blaise Pascal (France), 1994. | Zbl

[4] Y. Amirat, K. Hamdache and A. Ziani, Existence globale de solutions faibles pour un système parabolique-hyperbolique intervenant en dynamique des milieux poreux, C. R. Acad. Sci. Paris, t. 321, Sériel, p. 253-258, 1995. | MR | Zbl

[5] Y. Amirat, K. Hamdache and A. Ziani, Mathematical analysis for compressible miscible displacement models in porous media, Math, Models Meth. in the Appl. Sc., 6 (6), 729-747 (1996). | MR | Zbl

[6] Y. Amirat and Y. J. Peng, Compressible miscible displacement for multi-species mixture in porous media, preprint LMA 96-8, Univ. Blaise Pascal (France), 1996.

[7] J. P. Aubin, Un théorème de compacité, C. R. Acad. Sci., 256, p. 5042-5044, 1963. | MR | Zbl

[8] J. Bear, Dynamics of fluids in porous media, American Elsevier, 1972.

[9] J. Douglas, Numerical methods for the flow of miscible fluids in porous media, in Numerical methods in coupled Systems, eds. R. W. Lewis, P. Bettes and E. Hinton, p. 405-439, John Wiley, 1984. | Zbl

[10] J. Douglas and J. E. Roberts, Numerical methods for a model of compressible miscible displacement in porous media, Math, of Computation, 41-164, p. 441-459, 1983. | MR | Zbl

[11] G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, 1976. | MR | Zbl

[12] A. V. Khazhikhov and V. V. Shelukin, Unique global solution with respect to time of initial boundary value problems for one-dimensional equations of a viscous gas, PMM 41-2, p. 282-291, 1977. | MR | Zbl

[13] O. A. Ladyzhenskaja, V. A. Solonnikov and N. N. Ural'Ceva, Linear and quasilinear equations of parabolic type, Trans. of Math. Monographs, 28, 1968.

[14] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod-Gauthier-Villard, 1969. | MR | Zbl

[15] D.W. Peaceman, Fundamentals of numerical reservoir simulation, Elsevier, 1977.

[16] A. E. Scheidegger, The physics of flow through porous media, Univ. Toronto Press, 1974. | Zbl

[17] D. Serre, Existence globale de solutions faibles des équations de Navier-Stokes d'un fluide compressible en dimension 1, Sem. Collège de France, X, 1990.